Sgr A* モデルの現状+α

高橋労太@理化学研究所

BH天文学:Key Questions

1. 一般相対論は強重力場でどこまで正しいか?

強重力場での重力理論はGRなのか?どこでGRは破綻するのか?/BH候補天体は本当にBHか?証拠は?/

BH時空はいわゆるKerr計量なのか? No hair定理は正しいか?BH bumpinessあるか?高次元の効果?etc.

The state of the s

2. BH形成・進化過程は如何様か?

微視的物理、磁場、輻射などの効果 / BH 形成 (SMBH, IMBH, SN, GRB, etc) / binary BH形成&進化 / BH成長過程 (merger & accretion) / GW recoilの効果 / EMRI形成 / 理論検証につながる観測的特質は?

3. BH時空中の降着流・噴出流の物理

BH-disk-jetシステムでのエネルギー・運動量の流れの解明(強重力場での輻射磁気プラズマの物理)

e.g. BH質量・スピン, 質量降着率&磁場の関数としての輻射場はどのようになっているか?

噴出流へのBH時空の影響は?噴出流の正体は?噴出流の有無とBH質量の関係?(Sgr A*とM87の違い)

4. BH宇宙論的分布とホスト銀河への影響

BH質量-バルジ関係の起源 / 質量・スピン分布の宇宙論的進化 / 銀河BHの最大質量は? / コペルニクス原理 / GRの効果はどう効くのか? 効かないのか? / etc.

BH時空情報を含む観測データ

*現在までに得られている観測量(ブラックホール候補天体で)

- 1. スペクトル
- 2. 電波偏光 (LP, CP)
- 3. 時間変動 (スペクトル& 偏光)
- 4. 電波ビジビリティ (Doleman+08, Nature)
- → ほぼ全てが "BH+降着流・降着円盤" というシステム
- → 降着円盤モデルの不定性の為、BHスピンなどの値のコンセンサスが得られていない。
- (例)連続スペクトル: viewing angleとBH spinの縮退 (偏光で解ける)
 輝線スペクトル: 連続成分の引き方の不定性、鉄輝線源・光源の場所

*まだ、得られていない観測量(ブラックホール候補天体で)

5. イメージ(電波・X線)
 6. 重力波
 7. ニュートリノ

ブラックホールの影

The is fart was in the competent of the in the construction with the second of the sec

BHスピンとviewing angle

X

BH影の形状の詳細(1)

BH影の形状の詳細 (2)

観測ターゲット

the state of the s

Name	Other Name	D	$M_{\rm BH}$	θ_g	$S_{15\mathrm{GHz}}$	Remarks
		[Mpc]	$[10^8 \mathrm{~M}_\odot]$	$[\mu as]$	[mJy]	
NGC 3031	M 81	3.63	0.7	0.93	164.8	
NGC 3627		6.6	0.9	0.27	2.9	
NGC 3998		21.6	5.8	0.53	85	S at 5 GHz
NGC 4143		17	3.7	0.44	10	
NGC 4261		35.1	7.5	0.43	6230	S at 8.4 GHz
NGC 4278		9.7	2.8	0.57	89.7	
NGC 4374	M 84	18.4	16	1.74	183.7	
NGC 4486	M 87 おとめ座銀河団中 の楕円銀河・・	16.8	32	3.81	2835.7	
NGC 4552		16.8	3.7	0.43	58.6	
NGC 4594	M 104 \ldots	20	2.7	0.27	86.6	S at 8.4 GHz
NGC 5128	Cen A	4.2	2.4	2.96	2500	S at 8.4 GHz
IC 1459	PKS $2254 - 367$	27	25	1.85	1000	S at 8.4 GHz
Sgr A* 我々(の住む銀河中心	0.008	0.04	6.50	1030	S at 8.4 GHz

VSOP-2 Science Working Group, April 2007, "VSOP-2 Science Goals" http://www.vsop.isas.ac.jp/vsop2e/

Sgr A*: 我々の銀河中心

NASA/CXC/MIT/F.K.Baganoff et al.

Sgr A*: 力学的質量測定

Adaptive Optics

The Galactic Center at 2.2 microns

Since Sgr A* is so close, we can see stars in orbit around it.
 The Keck telescope and the Very Large Teleccope(s) have watched these stars for more than 15 years.

Steller Orbits

Recent results : from S0-2's orbit ✓ mass : 4 * 10^6 Msolar ✓ distance : 8 kpc

Confined to 600 region by stellar orbits .

Sgr A*: 中心イメージ

The Very-Long Baseline Array

VLBA Observation (3.5mm)

- > Closest stellar approach indicates that entire mass lies inside $_{600r_s}$.
- > This still allows some exotic alternatives to a BH.
- > Radio images obtained by the VLBA show that Sgr A^{*} is no longer than $15r_{\rm s}$.
- ➢ No gravitational lensing phenomena by some exotics alternatives have been detected.

Sgr A* : Radio Visibility

nature

Vol 455 4 September 2008 doi:10.1038/nature07245

LETTERS

Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre

Sheperd S. Doeleman¹, Jonathan Weintroub², Alan E. E. Rogers¹, Richard Plambeck³, Robert Freund⁴, Remo P. J. Tilanus^{5,6}, Per Friberg⁵, Lucy M. Ziurys⁴, James M. Moran², Brian Corey¹, Ken H. Young², Daniel L. Smythe¹, Michael Titus¹, Daniel P. Marrone^{7,8}, Roger J. Cappallo¹, Douglas C.-J. Bock⁹, Geoffrey C. Bower³, Richard Chamberlin¹⁰, Gary R. Davis⁵, Thomas P. Krichbaum¹¹, James Lamb¹², Holly Maness³, Arthur E. Niell¹, Alan Roy¹¹, Peter Strittmatter⁴, Daniel Werthimer¹³, Alan R. Whitney¹ & David Woody¹²

uv-coverage (例)

◆ フーリエ空間上の離散的サンプリング ◆ 衛星の軌道と天体の相対位置などにより決まる ✤ (例) Astro-G 2017 Jun 27 0: 0: 0 - 24: 0: 0 (SA: 86.0) (地上局+衛星) 2000 ◆ 衛星の周期 [例:90分] 観測の時間分解能に制限 (10⁶ λ) ✤ ISCOのケプラー回転周期 Sgr A*~十数分 2000 M87~数日

2000

-2000

0

u (10⁶ λ)

Sgr A* : Energy Spectrum

Synchrotron Spectrum

Sgr A* : Optically Thin Window

Sgr A* : Polarization Map

Marrone+06

Sgr A* : Polarization Variability

Sgr A*: Polarization 波長依存性

降着円盤モデル

✤ 質量降着率

ニュートリノ優勢降着流 ガンマ線バースト中心 NDAF (neutrino-dominated accretion flow) 超臨界降着円盤 / スリム円盤 ブラックホール連星 活動銀河核 Slim Disk / Supercritical Accretion Disk 標準降着円盤 ブラックホール連星 活動銀河核 Standard Disk / Sakura-Snyaev Disk 移流優勢降着流 低輝度活動銀河核 ADAF (advection-dominated accretion flow) 輻射非優勢降着流 我々の銀河中心 RIAF (radiatively in efficient accretion flow)

RIAFモデル

"輻射が効率的でない降着流"

RIAF (Radiatively Inefficient Accretion Flow)

低密度である (ガスがあまりない)

- ⇒ あまり放射が出ない
- ⇒ 重力エネルギーの散逸で得られたエネルギーはガスに溜る
- ⇒ 高温になる(円盤は厚く膨らむ)
- ⇒ 粘性が大きくなる
- → 角運動量をたくさん失い、降着速度が大きくなる
- ⇒ 低密度になる

RIAF中の2温度構造

温度構造

・2温度構造をしている (と思われている)

- エネルギーの流れ
 重力エネルギー
 - → 陽子を粘性加熱(陽子質量>>電子質量)
 - → 陽子から電子へエネルギーを渡す(ここが非効率) [2体反応(クーロン相互作用、プラズマ効果)]

→ 陽子:高温降着流 電子:一部を放射、陽子よりも低温で降着

Sgr A* モデルとBHスピン

◆ 偏光データまでフィットしているのは定常解のみ

- * Broderick et al (2009,ApJ): a/M=0+0.6(1 σ)+0.9(2 σ) α粘性RIAF, Keplar回転, 電子加熱率はパラメータ
- * Yuan et al.(2009,ApJ): a/M=0.5, 0.998 α粘性RIAF, 遷音速解, sub-Keplar回転, 電子加熱率はパラメータ
- * Huang, Takahashi & Shen (2009,ApJ): a/M<0.5 MRI粘性RIAF, 遷音速解, sub-Keplar回転 乱流による電子加熱 (Blandford&Eicher87)

✤ MHDシミュレーション・データを用いたもの

* Moscibrodzka, Gammie et al (2009,ApJ): a/M~0.9 MHD計算,電子加熱率は Ti/Te=10 (非等方圧力MRIモデルとconsistent)

* Dexter, Agol & Fragile (2009,ApJ): a/M=0.9のデータでフィット MHD計算, 電子加熱率は (Te+Ti)/Te=10

BHからのエネルギー(1)

* *dM/dt* < 0 となりうる >>> BHからエネルギー引き抜き (e.g.) superradiance, Blandford-Znajek process

M : mass, J : angular momentum, A : BH surface area $\kappa : \text{surface gravity}, \Omega_H : \text{angular velocity at } \mathcal{H}$ $\ell^a : \text{null vector}, k^a, l^a : \text{Killing vectors}$

BHからのエネルギー(2)

negative energy shock M.Takahashi & R.Takahashi (2010, submitted) *shock下流が負のエネルギーの解 >>> BHからのエネルギーの引き抜き ◆磁気圏の構造(いわゆるGS方程式の解) ◆ 観測データと比較できるレベルに理論を発展させるべき *観測されている降着流の場合にどうなるか? *どの程度起こりえるか?一般的か?

*BH近傍の他のエネルギーとの比較。

Einstein-Boltzmann-Maxwell システムを数値的に 解く計算技術の開発がSgr A*データ解釈に必要

✤ Einstein 方程式 [時空] $G_{ab} = 8\pi T_{ab}$ >>> 数値解法はほぼ完成 (BSSN) $\frac{\partial f}{\partial x^a} \frac{dx^a}{d\tau} + \frac{\partial f}{\partial p^a} \frac{dp^a}{d\tau} = \left(\frac{df}{d\tau}\right)_{\text{coll}}$ ✤ Boltzmann 方程式 [粒子] 測地線方程式 dx^a $\partial \mathcal{H}$ $dp_a = \partial \mathcal{H}$ $d\tau \quad \partial p_a, \quad d\tau \quad \partial x^a$ 光子・ニュートリノ・電子・陽電子 etc >>> 今後のメイン課題(特に光子と電子) ✤ Maxwell方程式 [磁場] $\nabla_a F^{ab} = 4\pi J^b$, $\nabla_{(a} F_{bc)} = 0$ >>> 散逸の取り扱いが今後の課題

ボルツマン方程式と観測量

- ◆ 適当なclosure relationを仮定して解く>>> GR効果 ✤ 光子分布関数のBoltzmann方程式を直接解く (非等方性の効果、GRでは一般に重要) >>> スペクトル、イメージ ✤ 偏光輻射場のBoltzmann方程式を解く >>> 偏光スペクトル ◆ 電子Boltzmann方程式を解く >>> 観測量における非熱的電子の効果 (2温度プラズマ、コロナ, etc) ◆ 分散関係を導入して光子Boltzmann方程式を解く
 - >>> 分散プラズマの効果

光子Boltzmann方程式を解く試み ◆ 現状:輻射テンソルの時間発展を解く試み 輻射テンソル $R^{ab} = \int dP \ f \ p^a p^b$ $E = R^{00}, F^i = R^{0i} \text{ or } P^{ij} = R^{ij}$ これを解くときには、closure relationが必要。 ✤ GR輻射MHDシミュレーション (1) Farris et al. (2008, PRD, 78, 024023) $R^{ab} = \tilde{E}u^a u^b + \tilde{F}^a u^b + \tilde{F}^b u^a + \tilde{P}^{ab}$ Eddington近似 (2) J.-P. De Villiers, 2008, astro-ph/0802.0848 (#) Moscibrodzka, Gammie et al. (2009, ApJ)

Closure Relation

* Eddington近似:等方輻射場 $P^{11} = P^{22} = P^{33} = \frac{E}{3}$

✤ M1 relation : dipole効果 Eddington tensor, GRで使えるか不明

(Dubroca&Feugeas 1999; Ripoll et al. 2001; Gonzalez et al. 2007) **C.-K. Chan (arXiv:astro-ph/0911.5351)** $f = \frac{g_s}{h^2} w(\xi) \left(a + \xi a_{\beta_1} n^{\beta_1} + \xi^2 a_{\beta_1 \beta_2} n^{\beta_1} n^{\beta_2} + \cdots \right), \ \xi = h\nu/\theta$

◆他にもいろいろ研究ある (Fukue 2006, 2008abなど)

電子Boltzmann方程式を解く試み

SR Boltzmann

* Mimica, Aloy et al. (2009, ApJ, 696, 1142)
 ジェットのスペクトルの時間発展
 電子に対するLindquist 方程式を解く。
 * 他、定常状態を解くものは幾つかある。

まとめ:Sgr A* とBHスピン

- ◆ 現状の理論モデルは、共通のBHスピンの値を導いていない。
 ◆ 偏光データは、定常解のモデルでしかフィットされていない。
 GRMHD計算によるフィッティングは今後。
- ◆電子温度が方程式の解として、consistentに解かれていないので、 現状の観測データからBHスピンを決めるのは難しい。 数値的に解く技術がまだ構築されていない。
- ◆ RIAFの電子温度を(Kerr時空中で)理論的に求めることは大変難しい。
- ✤ であるので、BHスピンの決定はBH shadowのイメージから求める 方がいいのかも知れない。

Source a start for party me second and a second of the second and a surce of the second of the secon

将来の観測データと科学的目標

◆科学的目標:Kerr時空/No hair定理のテスト *Kerr時空である場合には色々な重力理論が生き残る *結果として重力理論の選別に使われる (高次元の効果、CS重力項、etc.) *BHの観測には限界がある >>> 他の高密度天体か? ◆ 精密な時空計量の測定が期待される観測データ ① binary からの重力波 (EMRIなど) ② BHのイメージ (BH shadow) [電波/X線干渉計] 他、微視的物理、プラズマ物理などの効果が複雑に 入っていない観測データ

BH類似天体と観測データの比較

- ◆ 表面のある天体でいわゆるBHと似ているもの
 * Gravastar
 * boson star
 * BHに表面を仮定したもの
 表面があると降着流が落ちたときにBHと異なる
- ◆ 表面がない天体でいわゆるBHと似ているもの
 * super-spinar (Kerr naked singularity)
 * 高次元BH (brane world BHなど)
 * 弦理論の低エネルギー極限のBH (Chern-Simon BH)

(例) BHと区別できないもの

Super-spinar 周りの降着円盤からのX線スペクトル RT & Harada (2010, CQG)

parametrized-post Einsteinian

Yunes & Pretorius (2009, PRD, 80, 122003)

- ✤様々な重力理論を扱うframework
- ◆ 要請
- (i) Metric theory of gravity
 (ii) Weak-field consistency
 (iii) Strong-field inconsistency
 ◆ 例: binary BH-like compact object からのGW

 $\tilde{h}(f) = \begin{cases} \tilde{h}_{\mathrm{I}}^{(GR)}(f) \cdot (1 + \alpha u^{a})e^{i\beta u^{b}} & f < f_{\mathrm{IM}} \\ \gamma u^{c}e^{i(\delta + \epsilon u)} & f_{\mathrm{IM}} < f < f_{\mathrm{MRD}} \\ \zeta \frac{\tau}{1 + 4\pi^{2}\tau^{2}\kappa(f - f_{\mathrm{RI}})^{d}} & f > f_{MRD} \end{cases}$

*ppEパラメータを用いて波形を記述。

重力場のmultipole structure (1)

◆ ニュートニアンの場合(例) *地球の場合 $U(r,\theta) = \frac{GM}{R} \left[\frac{R}{r} - \sum_{n=2}^{\infty} a_n \left(\frac{R}{r} \right)^{n+1} P_n(\cos \theta) \right]$ $a_2 = (1082635 \pm 11) \times 10^{-9}, \quad a_3 = (-2531 \pm 7) \times 10^{-9}, \quad a_4 = (-1600 \pm 12) \times 10^{-9}, \dots$ 地球はナシ型の変形

*他にも 月の場合:宇宙研の衛星(2機で測定) 木星の場合:背景の天体への重力レンズ効果など

重力場のmultipole structure (2)

* Kerr ブラックホールの場合:No hair定理 $M_l + iS_l = M(ia_*)^l$

Hansen (1974)

 M_l : l次のmass multipole

 S_l : l次のcurrent multipole

*BHは四重極や更に高次の多重極を持たない。

◆ 軸対称時空の場合 *FHP algorithm (Fodor, Hoenselaers & Perjes 1989)により計算。 *中心天体がいわゆるKerr BHでない場合に用いられる。

BH spacetime with multipoles

◆ 厳密解: Manko & Novikov 計量 (Manko & Novikov 1992) $ds^{2} = -f(dt - \omega d\phi)^{2} + f^{-1}e^{2\gamma}(dR^{2} + dz^{2}) + f^{-1}R^{2}d\phi^{2}$ $f = e^{2\psi}A/B, \quad \omega = 2kC/A - 4k\alpha/(1 - \alpha^{2}), \quad \text{etc.}$ $\psi = \sum_{n=1}^{\infty} \alpha_{n} \frac{P_{n}}{d^{n+1}} \quad \text{etc.}$

 高次のmultipoleまで厳密に計算できる。ホライズン無し。
 近似解: bumpy BH (Vigeland & Hughes 2010)
 * bumpy Schwarzschild metric からNewman-Janis変換を用いて、 bumpy Kerr metricを作る。厳密解より簡単な方法。計量も簡単に書ける。
 近似解: quasi-Kerr (Glampedakis & Babak 2006)
 * slowly rotating Kerr限定

BH imagingでの可能性(1) RT (2010, in prep)

✤ innermost unstable photon orbitに対応する光子軌道 がBH shadowの輪郭を作る

BH imagingでの可能性(2) RT (2010, in prep)

✤ innermost unstable photon orbitに対応する光子軌道 がBH shadowの輪郭を作る forward problem : あるmetric仮定 ⇒ BH shadowの輪郭 (観測量) inverse problem : BH shadowの輪郭 ⇒ 時空のmultipole structure *Kerr時空からのずれが小さい場合にはできる ◆問題は観測可能性。実現可能な干渉計技術があるか? (例) LISAで観測できるが、X線干渉計では無理な場合。

modified BH shadow (1)

RT (2010, in prep)

✤ forward problem (例) quadrupole成分だけKerrからずれているBH r=10^6Mから観測したもの ⁸ Kerr BH a_{*} = 1, i = 9

>>> 将来の電波干渉計で観測可能。

modified BH shadow (2)

forward problem (例) slowly rotating BH in CS gravity

*解析的にBH shadow書ける。 *パラメータによってはX線干渉計でも無理。 *EMRIからのGWでは可能。

modified BH shadow (3)

RT (2010, in prep)

◆観測量:Kerr時空の場合
 仮定:サイズの絶対値を用いない
 (質量と距離の不定性が一般には存在する為)

>>> BH spin, viewing angleを縮退なしに決定可能

modified BH shadow (4)

RT (2010, in prep)

inverse problem (cf. Wikipedia) *一般には、 d = G(m)d: data, m: model parameter, G: forward operator*データとモデルパラメータが線形に依存する場合は、 d = Gmd: data, m: model parameter, G: observation matrix ◆ 今の場合、 BH shadow (観測量) ⇒ multipoles & viewing angle という逆問題を解きたい。

modified BH shadow (5)

inverse problem *RT* (2010, in prep) *一般には、 $x_m = G_m(i, M_1, S_1, ..., M_n, S_n)$ x_i : data (BHS contour), M_i, S_i : multipoles *Kerr時空からのずれが小さい場合 $\delta X_i = X_i - X_i^{\text{Kerr}} \ (X = x_i, M_i, S_i)$ $(\delta x_1, ..., \delta x_{2n+1})^T = G(i, \delta M_1, \delta S_1, ..., \delta M_n, \delta S_n)^T$ ◆ Kerr時空からのずれが大きい場合にもできるか? * forward problemは簡単なので観測量と比較可能 *そもそもずれが大きいと色々な観測と矛盾する(?)

おしまい