

21. Mar. 2010

浅田秀樹 (弘前大 理工 物理)

1) これまでの重力テスト

2) ブラックホールの一意性定理

3) 観測的検証に向けて

4) 理論的な課題

アインシュタイン

時空の力学 ―― 般相対性理論

Who? 時空+量子 → ?? (未完成)

一般相対性理論の方が正しい証拠

光の曲がり(重カレンズ)

水星の近日点移動

シャピロの時間の遅れ (レーダー)

連星パルサー (上の3個+公転周期の減少)

Figure 5: Measurements of the coefficient $(1 + \gamma)/2$ from light deflection and time delay measurements. Its GR value is unity. The arrows at the top denote anomalously large values from early eclipse expeditions. The Shapiro time-delay measurements using the Cassini spacecraft yielded an agreement with GR to 10^{-3} percent, and VLBI light deflection measurements have reached 0.02 percent. Hipparcos denotes the optical astrometry satellite, which reached 0.1 percent.

Will, LRR (06)

弱い重力場 (太陽系) 0(10⁻⁵) かなり強い重力場 (連星パルサー) $O(10^{-1})$ の観測的検証はある 強い重力場極限(ブラックホール)

でのテストはこれから!!

古い話・ 水星の近日点移動 ニュートン力学での 他の惑星による影響 531秒角/世紀 (金星=277、木星=153) 一般相対論効果 43秒角/世紀

一般相対論での 他天体による影響

= 新しい重力物理の効果

2) ブラックホール 光でさえ脱出できない 強い重力を持つ天体

仮定 4次元時空 真空(もしくは電磁場) 定常(時間的に変化しない) 漸近的に平坦

(遠くに離れれば影響無し)

アインシュタイン方程式の解

カー解のみ (M, J)

Israel (1967) Carter (1970) Hawking (1973) Robinson (1975)

アインシュタイン方程式の解

カー・ニューマン解のみ (M, J, Q)

理論-一般相対性理論

を仮定すれば、 ブラックホールの 「一意性定理」 が数学的に証明

観測的に「一意性定理」を検証

強い重力極限での理論をテスト 一般相対性理

or

新しい重力物理の兆候? (高次元、新しい場、Horava、、

3) 観測的検証に向けて

A) 質点 (s~0) でプローブ (星の運動)

B) 光 (s=1) で (ブラックホールシャドー)

C) 重力波(s=2) で(固有振動)

Will, ApJL (2008)

質点の運動方程式 @PN近似

$$a = -\frac{Mx}{r^3} + \frac{Mx}{r^3} \left(4\frac{M}{r} - v^2\right) + 4\frac{M\dot{r}}{r^2}v$$
$$- \frac{2J}{r^3} \left[2v \times \hat{J} - 3\dot{r}n \times \hat{J} - 3n(h \cdot \hat{J})/r\right]$$

Q + $\frac{3}{2} \frac{Q_2}{r^4} [5n(n \cdot \hat{J})^2 - 2(n \cdot \hat{J})\hat{J} - n],$

Sagitarius A (Sgr A、いて座A)

我々の銀河系中心にある複数の電波源

Sgr A* コンパクトな強い電波源 (天の川銀河中心の 巨大ブラックホールの候補)

Schoedel+, Nature (2002)

Orbit of S2

Schoedel+, Nature (2002)

radius from SgrA* (pc)

Schoedel et al, Nature (2002)

T=15.2 年 a=17 光時=120天文単位

M=(3.7±1.5) X10⁶太陽質量

シュバルツシルト半径 10[^]7 km ~0.1天文単位

LETTERS

Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre

Sheperd S. Doeleman¹, Jonathan Weintroub², Alan E. E. Rogers¹, Richard Plambeck³, Robert Freund⁴, Remo P. J. Tilanus^{5,6}, Per Friberg⁵, Lucy M. Ziurys⁴, James M. Moran², Brian Corey¹, Ken H. Young², Daniel L. Smythe¹, Michael Titus¹, Daniel P. Marrone^{7,8}, Roger J. Cappallo¹, Douglas C.-J. Bock⁹, Geoffrey C. Bower³, Richard Chamberlin¹⁰, Gary R. Davis⁵, Thomas P. Krichbaum¹¹, James Lamb¹², Holly Maness³, Arthur E. Niell¹, Alan Roy¹¹, Peter Strittmatter⁴, Daniel Werthimer¹³, Alan R. Whitney¹ & David Woody¹²

Pioneering works by Japanese radio astronomers Nakai + (1993) Miyoshi + (1995)

見かけの歳差の大きさ $\dot{\Theta} = \frac{A}{P} \frac{a}{D} \stackrel{\text{A=Precess}}{\substack{\text{a=semimajor}}}$ D=distance to GC

$$\mathbf{Q} \quad \chi \equiv \frac{J}{M^2} = 0.7$$

$$\sim 5\mu as/yr = 5 \times 10^{-6} arcsec/yr \quad \mathbf{QJ}$$

 $\sim 1\mu as/yr = 1 \times 10^{-6} arcsec/yr$ @QQ_2

観測精度(2次元位置決定)

>数十マイクロ秒角

現在は無理・

GAIA

SIM Lite

SIM (米) 202X **CGAIA** 数マイクロ秒角 しかし、銀河中心方向はX JASMINE (E) 202X 近赤=>銀河中心方向も〇 >10マイクロ秒角

"Ultimate JASMINE" 203X

1マイクロ秒角

ニュートン重力では 逆問題の解法+唯一性 (2D位置データから)

実視連星 Savary, Thiele-Innes, etc

位置天文的連星

Asada, Akasaka, Kasai (2004)

強い重力での多体効果

ー般相対論効果を 入れた3体問題 「8の字解」 Imai, Chiba, Asada, PRL(2007)

SgrAなどの強重力天体系での <u>3体(以上の)GR効果</u>