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Introduction

BH vicinity

Gravity near BHs is highly general relativistic.
Phenomena unique to BHs may be observed.
Not completely understood yet.
We focus on the following three phenomena:

High-energy particle collision (rapidly rotating BHs)
Collisional Penrose process (rapidly rotating BHs)
Photon sphere/sonic point correspondence (static spherically
symmetric BH)
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High-energy particle collision

Rotating BHs as particle accelerators

as

Kerr BHs act as particle accelerators (Bañados, Silk & West 2009,
Piran, Shaham & Katz 1975): The CM energy of colliding particles
can be unboundedly high near the horizon.
Not only microscopic particles but also macroscopic objects:
compact BHs and stars are accelerated by SMBHs.

Tomohiro Harada (Rikkyo U) BH vicinity BH magnetosphere 6 / 36



. . . . . .

High-energy particle collision

Kerr spacetime

Kerr metric

ds2 = −
(

1 − 2Mr
ρ2

)
dt2 − 4Mar sin2 θ

ρ2 dϕdt +
ρ2

∆
dr2 + ρ2dθ2

+

(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θdϕ2,

where ρ2 = r2 + a2 cos2 θ and ∆ = r2 − 2Mr + a2.

Horizon: r± = M ±
√

M2 − a2

Ergosphere: rE = M +
√

M2 − a2 cos2 θ

Angular velocity: ΩH = a/(r2
H + a2)

Extremal: a∗ := a/M = 1: rH = M,
rE = M(1 + sin2 θ), ΩH = 1/(2M)
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High-energy particle collision

Geodesic motion in the equatorial plane

Conserved quantities: E = −pt = −(∂t)
apa, L = pϕ = (∂ϕ)

apa,
where pa is the four-momentum with m2 = −papa.
The geodesic eqs are reduced to a 1D potential problem

1
2

ṙ2 + V (r) = 0,

V (r) = −m2M
r

+
L2 − a2(E2 − m2)

2r2 − M(L − aE)2

r3 − 1
2
(E2 − m2),

where the dot is the derivative w.r.t. the affine parameter.
The condition ṫ > 0 near the horizon is reduced to E − ΩHL ≥ 0.
We call particles with E − ΩHL = 0 critical particles and
Lc := E/ΩH critical angular momentum.
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High-energy particle collision

CM energy of colliding particles

CM energy: the total energy of two particles at the same
spacetime point observed in the centre-of-mass frame

pa
tot = pa

1 + pa
2, E2

cm = −pa
totptota.

For the Kerr BH in the equatorial plane

E2
cm = m2

1 + m2
2

+
2
r2

[
P1P2 − σ1σ2

√
R1

√
R2

∆
− (L1 − aE1)(L2 − aE2)

]
,

Pi(r) = (r2 + a2)Ei − Li ,

Ri(r) = P2
i (r)−∆(r)[m2

i r2 + (Li − aEi)
2].
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High-energy particle collision

CM energy for near-horizon collision

Ecm in the limit to r → rH for noncritical particles
“Rear-end” collision (most likely to occur): σ1σ2 = 1

E2
cm = m2

1 + m2
2 − 2

(L1 − aE1)(L2 − aE2)

r2
H

+
m2

1r2
H + (L1 − aE1)

2

r2
H

E2 − ΩHL2

E1 − ΩHL1
+ (1 ↔ 2).

Finite except in the limit Ei − ΩHLi → 0 (critical condition).
“Head-on”: σ1σ2 = −1, “Side”: σ1σ2 = 0

Ecm ∝ 1√
∆

∝

{
(r − rH)

−1/2 (|a| < M)

(r − rH)
−1 (|a| = M).

Collision of critical and subcritical particles

Ecm ∝ 1√
∆

∝ (r − rH)
−1/2 (|a| = M).
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High-energy particle collision

Motion of critical particles

A massive particle which was at rest at infinity can reach the
horizon if l = L/(mM) satisfies

−2(1 +
√

1 + a∗) = lL < l < lR = 2(1 +
√

1 − a∗).

lR ≤ lc , where lR = lc(= 2) only for a∗ = 1; a critical particle
reaches the horizon only for the extremal BH.
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High-energy particle collision

Banados-Silk-West process

A particle with lL < l < lR = lc = 2 can reach
the horizon of an extremal Kerr BH from
infinity.
Ecm of particles 1 and 2 for the near-horizon
collision diverges in the limit l1 → 2 (or
l2 → 2). (Bañados, Silk & West 2009).
For l1 = 2 and lL < l2 < 2, Ecm ∝ (r − rH)

−1/2

(Grib & Pavlov 2010).
Necessary to finetune the angular
momentum. Natural finetuning by the ISCO
(Harada & Kimura 2011).
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High-energy particle collision

A physical explanation

Figure: An infalling subcritical particle is accelerated to the light speed. If an
observer can stay at a constant radius near the horizon, he or she will see the
particle falling with almost the speed of light. (Harada & Kimura 2014,
Zaslavskii 2011)
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Collisional Penrose process

Ergoregion in the Kerr spacetime

The Killing vector (∂t)
a, which is future-pointing timelike and

normalised in the asymptotic region, becomes spacelike in the
ergoregion, where

M +
√

M2 − a2 = rH < r < rE = M +
√

M2 − a2 cos2 θ.

The conserved energy E := −(∂t)
apa, which is positive if (∂t)

a is
future-pointing timelike, can be negative in the ergoregion.
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Collisional Penrose process

Collisional Penrose process

A negative energy particle is possible in the ergoregion. This
enables us to extract energy from the BH.
High-energy collision may produce superheavy and/or
superenergetic particles.
Collisional Penrose process (Piran, Shaham & Katz 1975)

η = E3/(E1 + E2) can be larger than unity.

Figure: Left: Penrose process, Right: CPP
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Collisional Penrose process

Conservation laws and escape to infinity

E1 + E2 = E3 + E4, L1 + L2 = L3 + L4
pr

1 + pr
2 = pr

3 + pr
4

Can the ejecta espape to infinity?
We will focus on the extreme rotation a = M.

Figure: Turning points for an extremal Kerr BH for the impact parameter
b (Taken from Schnittman 2014)
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Collisional Penrose process

Near-critical particle near the horizon

A sequence of particles: L = 2ME(1 + δ), where δ = δ(1)ϵ+ O(ϵ2),
at r = M/(1 − ϵ). ṫ > 0 at r = M/(1 − ϵ) yields δ < ϵ+ O(ϵ2).

Turning points of the potential

rt,±(e) = M
(

1 +
2e

2e ∓
√

e2 + 1
δ(1)ϵ

)
+ O(ϵ2), where e = E/m.

To escape to infinity from r = M/(1 − ϵ), we need
(a) e ≥ 1, δ(1) < 0 and σ(:= signur ) = 1
(b) e ≥ 1, δ(1) > 0 and r ≥ rt,+(e), i.e., δ(1) ≤ δ(1)max(e)
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Collisional Penrose process

Upper limits on the efficiency

(a) Ingoing critical+ ingoing subcritical: ηmax ≃ 1 (Jacobson & Sotiriou
2010)

(b) Ingoing critical+ ingoing subcritical: ηmax ≃ 1.4 (Bejger et al. 2012,
Harada, Nemoto & Miyamoto 2012). The ejecta is bounced back.

(c) Outgoing critical + ingoing subcritical: ηmax = (2 +
√

3)2 ≃ 14
(Schnittman 2014, Leiderschneider & Piran 2016)

η ≃ 14 requires the production of a heavy particle
(m4 ∼ (r − rH)

−1/2). (Ogasawara, Harada & Miyamoto 2016)

Figure: Left: (a), Middle: (b), Right: (c)
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Collisional Penrose process

Super Penrose process

(d) Outgoing subcritical+ ingoing subcritical: ηmax = ∞ (Berti, Brito &
Cardoso 2015)

Is an outgoing subcritical particle physically motivated? If we
consider a preceding collision to produce an outgoing subcritical
particle, the total efficiency is less than 14. (Leiderschneider &
Piran 2015)

Figure: Left: Effective potential (Taken from Berti, Brito & Cardoso 2015),
Right: Super-Penrose process
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Collisional Penrose process

CPP for a > M (overspinning Kerr)

Outgoing subcritical particles arise after the bounce inside r = M.
Thus, a head-on collision at r = M naturally occurs with
Ecm ∝ (a − M)−1/2. (Patil & Joshi 2011)
Particles with positive energy at r = M eventually escape to
infinity, enabling high efficiency, i.e., η ∝ (a − M)−1/2. (Patil &
Harada 2016)
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Collisional Penrose process

Implications to observation

Near-extremal BH spins are “measured” (a∗ > 0.98, see
McClintock et al. 2011).
The BSW flux from dark matter annihilation is too low for the
Fermi satellite detection (McWilliams 2013).

The observational implications of Schnittman’s process and super
Penrose process are unclear.
The CPP around the near-exremal overspinning Kerr is
observationally interesting if it exists.
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Photon sphere/sonic point correspondence

Photon sphere in Schwarzschild

Schwarzschild spacetime

ds2 = −
(

1 − 2M
r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dΩ2.

Photon sphere: There is a unique circular orbit at r = rph = 3M,
which is unstable.
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rph = 3M is also the case for the Sch-dS.
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Photon sphere/sonic point correspondence

Sonic point in Schwarzschild

Stationary spherical flow (Michel(1972), Bondi (1952))
A sonic point lies on the sphere of rs = (1 + 3v2

s )/(2v2
s )M, where

vs =
√

(dp/dρ)s is the sound speed. For a radiation fluid p = ρ/3,
for which vs = 1/

√
3, we obtain rs = 3M.

rs = 3M is also the case for the Sch-dS (cf. Mach, Malec &
Karkowski (2013)).
None has ever pointed out the correspondence rph = rs in the Sch
and the Sch-dS in literature.
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Photon sphere/sonic point correspondence

Generalisation

Static spherically symmetric spacetime in arbitrary dimensions

ds2 = −f (r)dt2 + g(r)dr2 + r2dΩ2
D−2,

where we assume f (r) > 0 and g(r) > 0.
Application

Electrically charged BHs
BHs with cosmological constant
Nonvacuum BHs
Hairy BHs
Higher dimensional BHs in GR or supergravity
Nonvacuum exterior of an isolated star
BHs or isolated stars in modified gravity
BH mimickers with a photon sphere
...
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Photon sphere/sonic point correspondence

Theorem
.
Theorem (Correspondence of a sonic point with a photon sphere)
..

.

. ..

.

.

For any stationary and spherically symmetric physical transonic
accretion flow of an ideal photon gas, its sonic point is located at (one
of) the unstable photon sphere(s).

Figure: The theorem tells rph = rs.
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Photon sphere/sonic point correspondence

Photon sphere

Effective potential for a free massless particle

1
2

ṙ2 + V (r) = 0, V (r) := − 1
2gf

[
E2 − L2f

r2

]
Photon sphere: r = rph, where V (r) = V ′(r) = 0.

(r−2f )′ = 0 and b2
(
:=

L2

E2

)
=

r2
ph

f (rph)
.

Stability: V ′′(rph) > 0 ⇒ Stable,V ′′(rph) < 0 ⇒ Unstable

(r−2f )′′ > 0 ⇒ Stable, (r−2f )′′ < 0 ⇒ Unstable
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Photon sphere/sonic point correspondence

Stationary spherical flow

Basic equation
Perfect fluid T ab = nhuaub + pgab

First law: dh = Tds + dp/n
Conservation law: ∇aT ab = 0
Number conservation: ∇a(nua) = 0
Stationarity: ∂tQ = 0

Constants of integration (cf. Chaverra & Sarbach (2015))
Number flux: jn(r ,n) =: 4πµ
Energy flux: jϵ(r ,n)
Energy square per particle in place of jϵ(r ,n)

Fµ(r ,n) :=
(

jϵ(r ,n)
jn(r ,n)

)2

= h2(n)
[
f (r) +

µ2

r2(D−2)n2

]
An accretion flow with jn = 4πµ is given by a contour of Fµ(r ,n).
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Photon sphere/sonic point correspondence

Critical point

A contour of Fµ(r ,n) can be recasted in the system of a
Hamiltonian flow of Fµ(r ,n):

d
dλ

(
r
n

)
=

(
∂n
−∂r

)
Fµ(r ,n).

Critical point r = rc : ∂nFµ = ∂r Fµ = 0
Linearisation around the critical point

d
dλ

(
δr
δn

)
=

(
∂r∂nFµ ∂2

nFµ

−∂2
r Fµ −∂r∂nFµ

)(
δr
δn

)
The critical points are saddle or extremum.
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Photon sphere/sonic point correspondence

Ideal photon gas = radiation fluid

.
Lemma (EOS of an ideal photon gas)
..

.

. ..

.

.

The EOS for an ideal photon gas is given by p = ρ/(D − 1), where ρ is
the energy density. Then, the enthalpy h as a function of the number
density n is given by h = (kγ/(γ − 1))nγ−1, where k is a positive
constant and γ = D/(D − 1).

A radiation fluid is one of the basic matter fields, where local
thermal equilibrium is realised for a gas of photons with weak
interactions.
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Photon sphere/sonic point correspondence

Sonic point

Fluid velocity with respect to the static observer:

uµ =
1√

1 − v2
(eµ

(0) + veµ
(1)),

where
e(0) := f−1/2 ∂

∂t
, e(1) := g−1/2 ∂

∂r
.

Transonic flow and sonic point

v < vs (r > rs),

v = vs (r = rs),

v > vs (r < rs).
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Photon sphere/sonic point correspondence

Sketch of the proof for the correspondence theorem

...1 A sonic point in the physical (= with finite density gradient)
transonic flow corresponds to a critical point which is saddle.

...2 A critical point of the flow of an ideal photon gas satisfies
(r−2f )′ = 0 and is saddle (extremum) if (r−2f )′′ < 0 (> 0).

...3 A critical point of the flow of an ideal photon gas is located on the
photon sphere. A saddle (extremum) point lies on the unstable
(stable) photon sphere.
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Photon sphere/sonic point correspondence

Discussion

Physical mechanism
Just a coincidence? If not, what is a physical reason?
Is there any correspondence between a geodesic motion of a
photon and a sound wave of radiation fluid.

Application
Does the present accretion flow describe the accretion of radiation
in astrophysics or CMB?
Hairy BHs: coloured BHs, BBMB BHs, Non-Abelian BHs, ...

Generalisation
Hyperbolic symmetry, cylindrical symmetry, axial symmetry
If γ ̸= D/(D − 1)? Massive particles?
Accretion disks?
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Summary

Summary

...1 High-energy particle collision near a near-extremal Kerr is
robust as it is founded on the basic properties of geodesic
orbits. No fine-tuning is needed for the overspinning Kerr.

...2 The upper limit of the energy efficiency of the CPP has been
revised from ≃ 1 to ≃ 1.4, ≃ 14, and even ∞. It is unbounded
for the overspinning Kerr.

...3 The correspondence of a sonic point of a radiation accretion
flow with a photon sphere is seen not only in the 4D Sch but
also in general static spherically symmetric spacetime in
arbitrary dimensions.
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