Black hole vicinity: collisional Penrose process photon sphere/sonic point correspondence

Tomohiro Harada

Department of Physics, Rikkyo University
03-06/03/2015 BH magnetosphere @Yubari, Hokkaido Y. Koga and T. Harada, arXiv:1601.07290
K. Ogasawara, T. Harada and U. Miyamoto, arXiv:1511.00110
M. Patil and T. Harada, arXiv:1510.08205

Outline

(1) Introduction
(2) High-energy particle collision
(3) Collisional Penrose process
(4) Photon sphere/sonic point correspondence
(5) Summary

Outline

(2) High-energy particle collision
(3) Collisional Penrose process
4. Photon sphere/sonic point correspondence
(5) Summary

BH vicinity

- Gravity near BHs is highly general relativistic.
- Phenomena unique to BH may be observed.
- Not completely understood yet.
- We focus on the following three phenomena:
- High-energy particle collision (rapidly rotating BHs)
- Collisional Penrose process (rapidly rotating BHs)
- Photon sphere/sonic point correspondence (static spherically symmetric BH)

Outline

(1) Introduction
(2) High-energy particle collision

3 Collisional Penrose process

4 Photon sphere/sonic point correspondence
(5) Summary

Rotating BHs as particle accelerators

as

- Kerr BHs act as particle accelerators (Bañados, Silk \& West 2009, Piran, Shaham \& Katz 1975): The CM energy of colliding particles can be unboundedly high near the horizon.
- Not only microscopic particles but also macroscopic objects: compact BHs and stars are accelerated by SMBHs.

Kerr spacetime

- Kerr metric

$$
\begin{aligned}
d s^{2}= & -\left(1-\frac{2 M r}{\rho^{2}}\right) d t^{2}-\frac{4 M a r \sin ^{2} \theta}{\rho^{2}} d \phi d t+\frac{\rho^{2}}{\Delta} d r^{2}+\rho^{2} d \theta^{2} \\
& +\left(r^{2}+a^{2}+\frac{2 M r a^{2} \sin ^{2} \theta}{\rho^{2}}\right) \sin ^{2} \theta d \phi^{2},
\end{aligned}
$$

where $\rho^{2}=r^{2}+a^{2} \cos ^{2} \theta$ and $\Delta=r^{2}-2 M r+a^{2}$.

- Horizon: $r_{ \pm}=M \pm \sqrt{M^{2}-a^{2}}$
- Ergosphere: $r_{E}=M+\sqrt{M^{2}-a^{2} \cos ^{2} \theta}$
- Angular velocity: $\Omega_{H}=a /\left(r_{H}^{2}+a^{2}\right)$
- Extremal: $a_{*}:=a / M=1: r_{H}=M$, $r_{E}=M\left(1+\sin ^{2} \theta\right), \Omega_{H}=1 /(2 M)$

Geodesic motion in the equatorial plane

- Conserved quantities: $E=-p_{t}=-\left(\partial_{t}\right)^{a} p_{a}, L=p_{\phi}=\left(\partial_{\phi}\right)^{a} p_{a}$, where p^{a} is the four-momentum with $m^{2}=-p_{a} p^{a}$.
- The geodesic eqs are reduced to a 1D potential problem

$$
\begin{aligned}
& \frac{1}{2} \dot{r}^{2}+V(r)=0, \\
& V(r)=-\frac{m^{2} M}{r}+\frac{L^{2}-a^{2}\left(E^{2}-m^{2}\right)}{2 r^{2}}-\frac{M(L-a E)^{2}}{r^{3}}-\frac{1}{2}\left(E^{2}-m^{2}\right),
\end{aligned}
$$

where the dot is the derivative w.r.t. the affine parameter.

- The condition $\dot{t}>0$ near the horizon is reduced to $E-\Omega_{H} L \geq 0$.
- We call particles with $E-\Omega_{H} L=0$ critical particles and $L_{C}:=E / \Omega_{H}$ critical angular momentum.

CM energy of colliding particles

- CM energy: the total energy of two particles at the same spacetime point observed in the centre-of-mass frame

$$
p_{\mathrm{tot}}^{a}=p_{1}^{a}+p_{2}^{a}, \quad E_{\mathrm{cm}}^{2}=-p_{\mathrm{tot}}^{a} p_{\mathrm{tota}} .
$$

- For the Kerr BH in the equatorial plane

$$
\begin{aligned}
E_{\mathrm{cm}}^{2}= & m_{1}^{2}+m_{2}^{2} \\
& +\frac{2}{r^{2}}\left[\frac{P_{1} P_{2}-\sigma_{1} \sigma_{2} \sqrt{R_{1}} \sqrt{R_{2}}}{\Delta}-\left(L_{1}-a E_{1}\right)\left(L_{2}-a E_{2}\right)\right], \\
P_{i}(r)= & \left(r^{2}+a^{2}\right) E_{i}-L_{i}, \\
R_{i}(r)= & P_{i}^{2}(r)-\Delta(r)\left[m_{i}^{2} r^{2}+\left(L_{i}-a E_{i}\right)^{2}\right] .
\end{aligned}
$$

CM energy for near-horizon collision

- $E_{\text {cm }}$ in the limit to $r \rightarrow r_{H}$ for noncritical particles
- "Rear-end" collision (most likely to occur): $\sigma_{1} \sigma_{2}=1$

$$
\begin{aligned}
E_{\mathrm{cm}}^{2}= & m_{1}^{2}+m_{2}^{2}-2 \frac{\left(L_{1}-a E_{1}\right)\left(L_{2}-a E_{2}\right)}{r_{H}^{2}} \\
& +\frac{m_{1}^{2} r_{H}^{2}+\left(L_{1}-a E_{1}\right)^{2}}{r_{H}^{2}} \frac{E_{2}-\Omega_{H} L_{2}}{E_{1}-\Omega_{H} L_{1}}+(1 \leftrightarrow 2)
\end{aligned}
$$

Finite except in the limit $E_{i}-\Omega_{H} L_{i} \rightarrow 0$ (critical condition).

- "Head-on": $\sigma_{1} \sigma_{2}=-1$, "Side": $\sigma_{1} \sigma_{2}=0$

$$
E_{\mathrm{cm}} \propto \frac{1}{\sqrt{\Delta}} \propto \begin{cases}\left(r-r_{H}\right)^{-1 / 2} & (|a|<M) \\ \left(r-r_{H}\right)^{-1} & (|a|=M)\end{cases}
$$

- Collision of critical and subcritical particles

$$
E_{\mathrm{cm}} \propto \frac{1}{\sqrt{\Delta}} \propto\left(r-r_{H}\right)^{-1 / 2} \quad(|a|=M)
$$

Motion of critical particles

- A massive particle which was at rest at infinity can reach the horizon if $I=L /(m M)$ satisfies

$$
-2\left(1+\sqrt{1+a_{*}}\right)=I_{L}<I<I_{R}=2\left(1+\sqrt{1-a_{*}}\right)
$$

- $I_{R} \leq I_{C}$, where $I_{R}=I_{C}(=2)$ only for $a_{*}=1$; a critical particle reaches the horizon only for the extremal BH .

Banados-Silk-West process

- A particle with $I_{L}<I<I_{R}=I_{C}=2$ can reach the horizon of an extremal Kerr BH from infinity.
- E_{cm} of particles 1 and 2 for the near-horizon collision diverges in the limit $l_{1} \rightarrow 2$ (or $I_{2} \rightarrow 2$). (Bañados, Silk \& West 2009).
- For $I_{1}=2$ and $I_{L}<I_{2}<2, E_{\text {cm }} \propto\left(r-r_{H}\right)^{-1 / 2}$ (Grib \& Pavlov 2010).
- Necessary to finetune the angular momentum. Natural finetuning by the ISCO (Harada \& Kimura 2011).

A physical explanation

Figure: An infalling subcritical particle is accelerated to the light speed. If an observer can stay at a constant radius near the horizon, he or she will see the particle falling with almost the speed of light. (Harada \& Kimura 2014, Zaslavskii 2011)

Outline

(1) Introduction

(2) High-energy particle collision

(3) Collisional Penrose process
4. Photon sphere/sonic point correspondence
(5) Summary

Ergoregion in the Kerr spacetime

- The Killing vector $\left(\partial_{t}\right)^{a}$, which is future-pointing timelike and normalised in the asymptotic region, becomes spacelike in the ergoregion, where

$$
M+\sqrt{M^{2}-a^{2}}=r_{H}<r<r_{E}=M+\sqrt{M^{2}-a^{2} \cos ^{2} \theta}
$$

- The conserved energy $E:=-\left(\partial_{t}\right)^{a} p_{a}$, which is positive if $\left(\partial_{t}\right)^{a}$ is future-pointing timelike, can be negative in the ergoregion.

Collisional Penrose process

- A negative energy particle is possible in the ergoregion. This enables us to extract energy from the BH .
- High-energy collision may produce superheavy and/or superenergetic particles.
- Collisional Penrose process (Piran, Shaham \& Katz 1975) $\eta=E_{3} /\left(E_{1}+E_{2}\right)$ can be larger than unity.

Figure: Left: Penrose process, Right: CPP

Conservation laws and escape to infinity

- $E_{1}+E_{2}=E_{3}+E_{4}, \quad L_{1}+L_{2}=L_{3}+L_{4}$
- $p_{1}^{r}+p_{2}^{r}=p_{3}^{r}+p_{4}^{r}$
- Can the ejecta espape to infinity?
- We will focus on the extreme rotation $a=M$.

Figure: Turning points for an extremal Kerr BH for the impact parameter b (Taken from Schnittman 2014)

Near-critical particle near the horizon

- A sequence of particles: $L=2 M E(1+\delta)$, where $\delta=\delta_{(1)} \epsilon+O\left(\epsilon^{2}\right)$, at $r=M /(1-\epsilon) . \dot{t}>0$ at $r=M /(1-\epsilon)$ yields $\delta<\epsilon+O\left(\epsilon^{2}\right)$.
- Turning points of the potential

$$
r_{t, \pm}(e)=M\left(1+\frac{2 e}{2 e \mp \sqrt{e^{2}+1}} \delta_{(1)} \epsilon\right)+O\left(\epsilon^{2}\right), \text { where } e=E / m .
$$

- To escape to infinity from $r=M /(1-\epsilon)$, we need
(a) $e \geq 1, \delta_{(1)}<0$ and $\sigma\left(:=\operatorname{sign} u^{r}\right)=1$
(b) $e \geq 1, \delta_{(1)}>0$ and $r \geq r_{t,+}(e)$, i.e., $\delta_{(1)} \leq \delta_{(1) \max }(e)$

Upper limits on the efficiency

(a) Ingoing critical+ ingoing subcritical: $\eta_{\max } \simeq 1$ (Jacobson \& Sotiriou 2010)
(b) Ingoing critical+ ingoing subcritical: $\eta_{\max } \simeq 1.4$ (Bejger et al. 2012, Harada, Nemoto \& Miyamoto 2012). The ejecta is bounced back.
(c) Outgoing critical + ingoing subcritical: $\eta_{\max }=(2+\sqrt{3})^{2} \simeq 14$ (Schnittman 2014, Leiderschneider \& Piran 2016)

- $\eta \simeq 14$ requires the production of a heavy particle ($m_{4} \sim\left(r-r_{H}\right)^{-1 / 2}$). (Ogasawara, Harada \& Miyamoto 2016)

Figure: Left: (a), Middle: (b), Right: (c)

Super Penrose process

(d) Outgoing subcritical+ ingoing subcritical: $\eta_{\max }=\infty$ (Berti, Brito \& Cardoso 2015)

- Is an outgoing subcritical particle physically motivated? If we consider a preceding collision to produce an outgoing subcritical particle, the total efficiency is less than 14. (Leiderschneider \& Piran 2015)

Figure: Left: Effective potential (Taken from Berti, Brito \& Cardoso 2015), Right: Super-Penrose process

CPP for $a>M$ (overspinning Kerr)

- Outgoing subcritical particles arise after the bounce inside $r=M$. Thus, a head-on collision at $r=M$ naturally occurs with $E_{\mathrm{cm}} \propto(a-M)^{-1 / 2}$. (Patil \& Joshi 2011)
- Particles with positive energy at $r=M$ eventually escape to infinity, enabling high efficiency, i.e., $\eta \propto(a-M)^{-1 / 2}$. (Patil \& Harada 2016)

Implications to observation

- Near-extremal BH spins are "measured" ($a_{*}>0.98$, see McClintock et al. 2011).
- The BSW flux from dark matter annihilation is too low for the Fermi satellite detection (McWilliams 2013).

- The observational implications of Schnittman's process and super Penrose process are unclear.
- The CPP around the near-exremal overspinning Kerr is observationally interesting if it exists.

Outline

(1) Introduction

(2) High-energy particle collision

(3) Collisional Penrose process

4 Photon sphere/sonic point correspondence
(5) Summary

Photon sphere in Schwarzschild

- Schwarzschild spacetime

$$
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}+r^{2} d \Omega^{2}
$$

- Photon sphere: There is a unique circular orbit at $r=r_{p h}=3 M$, which is unstable.

- $r_{p h}=3 M$ is also the case for the Sch-dS.

Sonic point in Schwarzschild

- Stationary spherical flow (Michel(1972), Bondi (1952))

A sonic point lies on the sphere of $r_{s}=\left(1+3 v_{s}^{2}\right) /\left(2 v_{s}^{2}\right) M$, where $v_{s}=\sqrt{(d p / d \rho)_{s}}$ is the sound speed. For a radiation fluid $p=\rho / 3$, for which $v_{s}=1 / \sqrt{3}$, we obtain $r_{s}=3 M$.

- $r_{s}=3 M$ is also the case for the Sch-dS (cf. Mach, Malec \& Karkowski (2013)).
- None has ever pointed out the correspondence $r_{p h}=r_{s}$ in the Sch and the Sch-dS in literature.

Generalisation

- Static spherically symmetric spacetime in arbitrary dimensions

$$
d s^{2}=-f(r) d t^{2}+g(r) d r^{2}+r^{2} d \Omega_{D-2}^{2}
$$

where we assume $f(r)>0$ and $g(r)>0$.

- Application
- Electrically charged BHs
- BHs with cosmological constant
- Nonvacuum BHs
- Hairy BHs
- Higher dimensional BHs in GR or supergravity
- Nonvacuum exterior of an isolated star
- BHs or isolated stars in modified gravity
- BH mimickers with a photon sphere
- ...

Theorem

Theorem (Correspondence of a sonic point with a photon sphere)
For any stationary and spherically symmetric physical transonic accretion flow of an ideal photon gas, its sonic point is located at (one of) the unstable photon sphere(s).

Figure: The theorem tells $r_{p h}=r_{s}$.

Photon sphere

- Effective potential for a free massless particle

$$
\frac{1}{2} \dot{r}^{2}+V(r)=0, \quad V(r):=-\frac{1}{2 g f}\left[E^{2}-\frac{L^{2} f}{r^{2}}\right]
$$

- Photon sphere: $r=r_{p h}$, where $V(r)=V^{\prime}(r)=0$.

$$
\left(r^{-2} f\right)^{\prime}=0 \quad \text { and } \quad b^{2}\left(:=\frac{L^{2}}{E^{2}}\right)=\frac{r_{p h}^{2}}{f\left(r_{p h}\right)}
$$

- Stability: $V^{\prime \prime}\left(r_{p h}\right)>0 \Rightarrow$ Stable, $V^{\prime \prime}\left(r_{p h}\right)<0 \Rightarrow$ Unstable

$$
\left(r^{-2} f\right)^{\prime \prime}>0 \Rightarrow \text { Stable, } \quad\left(r^{-2} f\right)^{\prime \prime}<0 \Rightarrow \text { Unstable }
$$

Stationary spherical flow

- Basic equation
- Perfect fluid $T^{a b}=n h u^{a} u^{b}+p g^{a b}$
- First law: $d h=T d s+d p / n$
- Conservation law: $\nabla_{a} T^{a b}=0$
- Number conservation: $\nabla_{a}\left(n u^{a}\right)=0$
- Stationarity: $\partial_{t} Q=0$
- Constants of integration (cf. Chaverra \& Sarbach (2015))
- Number flux: $j_{n}(r, n)=: 4 \pi \mu$
- Energy flux: $j_{\epsilon}(r, n)$
- Energy square per particle in place of $j_{\epsilon}(r, n)$

$$
F_{\mu}(r, n):=\left(\frac{j_{\epsilon}(r, n)}{j_{n}(r, n)}\right)^{2}=h^{2}(n)\left[f(r)+\frac{\mu^{2}}{r^{2(D-2)} n^{2}}\right]
$$

- An accretion flow with $j_{n}=4 \pi \mu$ is given by a contour of $F_{\mu}(r, n)$.

Critical point

- A contour of $F_{\mu}(r, n)$ can be recasted in the system of a Hamiltonian flow of $F_{\mu}(r, n)$:

$$
\frac{d}{d \lambda}\binom{r}{n}=\binom{\partial_{n}}{-\partial_{r}} F_{\mu}(r, n)
$$

- Critical point $r=r_{c}: \partial_{n} F_{\mu}=\partial_{r} F_{\mu}=0$
- Linearisation around the critical point

$$
\frac{d}{d \lambda}\binom{\delta r}{\delta n}=\left(\begin{array}{cc}
\partial_{r} \partial_{n} F_{\mu} & \partial_{n}^{2} F_{\mu} \\
-\partial_{r}^{2} F_{\mu} & -\partial_{r} \partial_{n} F_{\mu}
\end{array}\right)\binom{\delta r}{\delta n}
$$

- The critical points are saddle or extremum.

Saddle

Extremum

Ideal photon gas = radiation fluid

Lemma (EOS of an ideal photon gas)
The EOS for an ideal photon gas is given by $p=\rho /(D-1)$, where ρ is the energy density. Then, the enthalpy h as a function of the number density n is given by $h=(k \gamma /(\gamma-1)) n^{\gamma-1}$, where k is a positive constant and $\gamma=D /(D-1)$.

- A radiation fluid is one of the basic matter fields, where local thermal equilibrium is realised for a gas of photons with weak interactions.

Sonic point

- Fluid velocity with respect to the static observer:

$$
u^{\mu}=\frac{1}{\sqrt{1-v^{2}}}\left(e_{(0)}^{\mu}+v e_{(1)}^{\mu}\right)
$$

where

$$
e_{(0)}:=f^{-1 / 2} \frac{\partial}{\partial t}, \quad e_{(1)}:=g^{-1 / 2} \frac{\partial}{\partial r} .
$$

- Transonic flow and sonic point

$$
\begin{aligned}
& v<v_{s}\left(r>r_{s}\right), \\
& v=v_{s}\left(r=r_{s}\right), \\
& v>v_{s}\left(r<r_{s}\right) .
\end{aligned}
$$

Sketch of the proof for the correspondence theorem

(1) A sonic point in the physical (= with finite density gradient) transonic flow corresponds to a critical point which is saddle.
(2) A critical point of the flow of an ideal photon gas satisfies $\left(r^{-2} f\right)^{\prime}=0$ and is saddle (extremum) if $\left(r^{-2} f\right)^{\prime \prime}<0(>0)$.
(3) A critical point of the flow of an ideal photon gas is located on the photon sphere. A saddle (extremum) point lies on the unstable (stable) photon sphere.

Discussion

- Physical mechanism
- Just a coincidence? If not, what is a physical reason?
- Is there any correspondence between a geodesic motion of a photon and a sound wave of radiation fluid.
- Application
- Does the present accretion flow describe the accretion of radiation in astrophysics or CMB?
- Hairy BHs: coloured BHs, BBMB BHs, Non-Abelian BHs, ...
- Generalisation
- Hyperbolic symmetry, cylindrical symmetry, axial symmetry
- If $\gamma \neq D /(D-1)$? Massive particles?
- Accretion disks?

Outline

(1) Introduction

(2) High-energy particle collision

(3) Collisional Penrose process

4 Photon sphere/sonic point correspondence
(5) Summary

Summary

(1) High-energy particle collision near a near-extremal Kerr is robust as it is founded on the basic properties of geodesic orbits. No fine-tuning is needed for the overspinning Kerr.
(2) The upper limit of the energy efficiency of the CPP has been revised from $\simeq 1$ to $\simeq 1.4, \simeq 14$, and even ∞. It is unbounded for the overspinning Kerr.
(3) The correspondence of a sonic point of a radiation accretion flow with a photon sphere is seen not only in the 4D Sch but also in general static spherically symmetric spacetime in arbitrary dimensions.

