Black Hole Shadowの物理

：輪郭から分かる相対論効果

高橋労太（国立高專機構苫小牧高專）

福江純「カラー図解でわかるブラックホール宇宙」SoftBank Creative（2009）

光に照らされた闇夜のカラス
 为必多
 「影絵」として見える

ックホール・シャドウの大きさ

J．L．Synge，Mon．Not．R．astro．Soc．，131，463－466（1966） ＂The Escape Photons from Gravitationally Intense Stars＂
シュバルツシルト・ブラックホール

Grenzebach，Perlick \＆Lammerzahl（2014，PRD，89，124004）

Syngeの公式

$$
\begin{aligned}
\sin ^{2} \alpha & =\frac{27}{4} \frac{\left(\rho_{\mathrm{o}}-1\right)}{\rho_{\mathrm{o}}^{3}} \\
\rho_{\mathrm{o}} & \equiv \frac{r}{2 G M / c^{2}}
\end{aligned}
$$

Synge（1966，MNRAS，I3I，463）

Haciwara 1931

Yusuke Hagiwara，Jap．J．Astr．Geophys．，8，67－I76（193I）
＂Theory of the Relativistic Trajectories in a Gravitational Field of Schwarzschild＂
＊Schwarzschild時空の測地線の解析解，正準方程式，Hamilton－Jacobi方程式，変数分離，軌道の分類

萩原雄袏（1897－1979）

Chapter IX，Trajectory of a Light Ray
＂．．．an observer in any part of the space can see every star ．．．＂（p79）

Darwin 1958

C．Darwin，Proc．R．Soc．，A，249，180－I94（1958）
＂The gravity field of a particle＂
＊Schwarzschild時空の測地線

$$
\left(\frac{\mathrm{d} u}{\mathrm{~d} \theta}\right)^{2}=2 m u^{3}-u^{2}+\frac{1}{l^{2}}
$$

＊bending angle

P / m	$3 \cdot 2$	$3 \cdot 4$	$3 \cdot 6$	$3 \cdot 8$	4	5	6	7	8	9	10	11	12
μ°	273	205	162	143	125	79	58	46	38	32	28	25	23
l / m	$5 \cdot 23$	$5 \cdot 30$	$5 \cdot 40$	$5 \cdot 53$	$5 \cdot 66$	$6 \cdot 46$	$7 \cdot 35$	$8 \cdot 28$	$9 \cdot 24$	$10 \cdot 22$	$11 \cdot 20$	$12 \cdot 17$	$13 \cdot 15$

P ：perihelion distance，μ ：bending angle，l ：constant
＊impact parameterとbending angleの間の関係式
（photon orbit近傍で成立する近似式）

$$
\begin{aligned}
& l=\left(5 \cdot 19+3 \cdot 48 \mathrm{e}^{-\mu}\right) m \\
&(\approx \sqrt{27})
\end{aligned}
$$

＊relativistic imagesの明るさの近似式も計算
＊Hagiwara（1930）引用されていない

ックホール・シャドウの大きさ

J．L．Synge，Mon．Not．R．astro．Soc．，131，463－466（1966） ＂The Escape Photons from Gravitationally Intense Stars＂
シュバルツシルト・ブラックホール

Grenzebach，Perlick \＆Lammerzahl（2014，PRD，89，124004）

Syngeの公式

$$
\begin{aligned}
\sin ^{2} \alpha & =\frac{27}{4} \frac{\left(\rho_{\mathrm{o}}-1\right)}{\rho_{\mathrm{o}}^{3}} \\
\rho_{\mathrm{o}} & \equiv \frac{r}{2 G M / c^{2}}
\end{aligned}
$$

Synge（1966，MNRAS，I3I，463）

観測者の空に見えるブラックホール・シャドウ

カー・ブラックホール（自転するブラックホール）の場合

R．Takahashi \＆M．Takahashi（20I0，A\＆A，5I3，A77）

観測者の全天にブラックホールが占める割合

シュバルツシルト・ブラックホールの場合
カー・ブラックホールの場合

RT \＆M．Takahashi（20I0，A\＆A， 5 I3，A77）

Bardeen 1973

J. M. Bardeen, in Black Holes ed. C. DeWitt \& B. S. DeWitt (1973)
"Timelike and Null Geodesics in the Kerr Metric"

$$
\begin{aligned}
& \alpha=-\frac{\lambda}{\sin \theta_{\mathrm{o}}} \\
& \beta= \pm\left[\eta+\cos ^{2} \theta_{\mathrm{o}}-\lambda^{2} \cot ^{2} \theta_{\mathrm{o}}\right]^{1 / 2}
\end{aligned}
$$

Photon Sphere \rightarrow

$$
\begin{aligned}
& \lambda=\frac{-r^{3}+3 m r^{2}-a^{2}(r+m)}{a(r-m)} \\
& \eta=\frac{r^{3}\left[4 a^{2} m-r(r-3 m)^{2}\right]}{a^{2}(r-m)^{2}}
\end{aligned}
$$

Photon Sphere

$\dot{r}^{2} \propto R(r)$
$R=\frac{d R}{d r}=0, \frac{d^{2} R}{d r^{2}}>0$ (unstable)

Photon Sphere around a Kerr BH

E. Teo, General Relativity and Gravitation 35,1909 (2003)

"Spherical Photon Orbits around a Kerr Black Hole"

Complete Table of Example Orbits
Here we focus on two values of a, namely the extreme case $a=M$ and a non-extreme case $a=0.5 \mathrm{M}$. Phi Here we focus on two values of a, namely the extreme case $a=M$ and a non-extreme case $a=0.5 M$.
takes the range $-7 M<P h i<2 M$ in the former case, while it takes the range $-6.1382 M<P h i<4.0963 M$ in the latter case. Example orbits are chosen at more or less equal intervals along these ranges
In most of the examples, the orbits have been plotted for an integer number of latitudinal oscillations until they return to near the starting point. Again, clicking on each figure gives a three-dimensional wire-frame model of the orbit.

http://www.physics.nus.edu.sg/~phyteoe/kerr/

Luminet 1979

J.-P. Luminet, Astron. Astrophys. 75, 228-235 (1979)
"Image of a Spherical Black Hole with Thin Accretion Disk"

J.-P. Luminet, Astron. Astrophys. 75, 228-235 (1979)
"Image of a Spherical Black Hole with Thin Accretion Disk"

Fukue \& Yokoyama 1979

J. Fukue \& T. Yokoyama, Publ. Astron. Soc. Japan 40, I5-24 (I988)
"Color Photographs of an Accretion Disk around a Black Hole"

(a)

X-ray Photograph
2-30 keV

Bolometric Photograph

(b)

光学的に厚く幾何学的に薄いブラックホール降着流のイメージ Kerrブラックホールのスピン（回転の度合いを表す）： $\mathrm{a}^{*}=0,0.5,0.999$（左図から右図），観測者が見る位置： $\mathrm{i}=10$ 度（上の図）， 85 度（下の図），これらは一般相対論的輻射輸送計算により計算した。

Bromely, Chen \& MHller 1997

B. C. Bromley, K. Chen \& W. Miller, The Astrophysical Journal 475, 57-64 (1997)
"Line Emission From an Accretion Disk around a Rotating Black Hole: Toward a Measurement of Frame Dragging"

Line Spectrum

* maximum Kerr (a=M), inclination angle=75[deg]
* image of redshift factor
* 1200×1200 pixels
* 15 minutes using 128 nodes on a Cray T3D Supercomputer

隆着円盤中のBHシャドウの輪郭

RT（2004，ApJ，6II，996－I004）

嶐着円盤中のBHシャドウの䡢郭

Falcke, Mella \& Agol 2000

H. Falcke, F. Melia \& E. Agol, The Astrophysical Journal 528, LI 3-LI 6 (2000)
"Viewing the Shadow of the Black Hole at the Galactic Center"

光学的に薄く幾何学的に厚いブラックホール降着流のイメージ 最大回転するブラックホールを仮定し，観測者が見る位置は85度とした。同じデータに対し，カラーの付け方を変えることにより異なるイメージを作成した。最も明るく輝 いている部分は，ブラックホール回転が引き起こす時空の引きずりの効果により青方偏移している部分に対応する。

電磁波では直接BHを見ることはできない

光学的に薄い降着流

因果構造

BH近傍から来る out－going null を観測する。

- 背景光の手前のBHのシルエットが見える。間接的に見る。
- 中心の低輝度領域をBH shadowと呼ぶ。
- 光学的に薄い波長での観測が必要（一般に暗いイメージ）。

Bromley, Melia \& Liu 2001

B. C. Bromley, F. Melia \& S. Liu, The Astrophysical Journal 555, L83-L86 (200I) "Polarimetric Imaging of the Massive Black Hole at the Galactic Center"

K. Akiyama et al., astro-ph/I505.0354 (20 I5)

" 230 GHz VLBI Observations of M87: Event-Horizon-Scale Structure at the Enhanced Very-High-Energy Y-ray State in 2012 "

A. Bohn et al., Classical and Quantum Gravity, 32, 065002 (2015)

 "What does a binary black hole merger look like?"

O. James et al., Classical and Quantum Gravity, 32, 06500 I (20I5)

"Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar"

J. D. Schnittman, APS April Meeting 20 I5, Baltimore

"The Distribution and Annihilation of Dark Matter around Black Holes"

see, also,
J. D. Schnittman, Physical Review Letters, I I 3, 26 I 102 (20|4)
"Revised Upper Limit to Energy Extraction from a Kerr Black Hole"

Beyond Kerr Spacetime

＊重力場の分布

- 地球や月で泪定されている
- 重力場分布の記述
\rightarrow 球悪調和関数展開
$f(r, \theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{l m} r^{l} Y_{l}^{m}(\theta, \phi)$

GRACE Gravity Model
＊No Hair Theorem $\quad M_{l}+i S_{l}=M\left(i a_{*}\right)^{l}$
（ M_{l} ：mass multipole，S_{l} ：current multipole） Geroch（1970），Hansen（1974）
＊multipole structure の測定
\rightarrow Kerr時空の検証，重力理验の検証

$$
M_{l}+i S_{l}=M\left(i a_{*}\right)^{l}+\delta M_{l}+i \delta S_{l}
$$

方法 A：Kerr時空からの掁動をできるだけ一般的に記述
 （発展途上）
Johannsen \＆Psaltis（2011）
Johannsen（2013）
Cardoso，Pani \＆Rico（2014）

㩴Kerr時空でのBHシャドウの輪郭
T．Johannsen，ApJ，777， 170 （2013）
方法 B：Case－by－case analysis
\rightarrow Black Hole Shadow Zoo

Black Hole Shadow $Z 00$

Schwarzschild BH （Synge 1966）

Kerr BH
 （Bardeen 1973）

＊Contour of a Shadow

Kerr－Newman BH（de Vries 2000），Schwarzschild－de Sitter BH（Bakala et al．2007），Sen BH（Hioki \＆Miyamoto 2008）， braneworld Kerr BH（Schee \＆Stuchlik 2009），Tomimatsu－Sato spacetime（Bambi \＆Yoshida 2010），
dynamical Chern－Simons BH（Amarilla，Eiroa \＆Giribet 2010），
Kastor－Traschen cosmological multi－BH solution（Nitta，Chiba \＆Sugiyama 201 1），
rotating braneworld BH（Amarilla \＆Eiroa 2012），Majumder－Papapetrou solution（Yumoto et al．2012），
Kalza－Klein rotating dilaton BH（Amarilla \＆Eiroa 2013），Kerr－Taub－NUT BH（Abdujabbarov et al．2013），
rotating Horava－Lifshitz BH（Atamurotov，Abdujabbarov \＆Ahmedov 2013），
rotating non－Kerr BH（Atamurotov，Abdujabbarov \＆Ahmedov 2013），Einstein－Maxwell－dilaton－axion BH（Wei \＆Liu 2013）， Kerr－Newman－NUT（Newman－Unti－Tamburino）BH with a cosmological constant（Grenzebach，Perlick \＆Lammerzahl 2014）， a five－dimensional rotating Myers－Perry BH（Papnoi et al．2014），
Schwarzschild－MOG（modified gravity）\＆Kerr－MOG（Moffat 2015），binary BH（Bohn et al．2015），
Plebanski－Demianski spacetime（Grenzebach，Perlick \＆Lammerzahl 2015），
a Schwarzschild BH in an external gravitational field（Abdolrahimi，Mann \＆Tzounis 2015）
他に，
＊Black Hole Shadow in an Accretion Disk
＊Shadow of a naked singularity（e．g．super－spinar，overspinning Kerr）
他にもあるだろう・••
＊Shadow of other objects（e．g．boson star）

Eとめ

\＃過去のブラックホール・シャドウの研究をいくつか紹介した。 （全てを綱羅したわけではない）
\＃電波干渉計での観測により，もうすぐシャドウがとらえられる かもしれない。現在は，フーリエ空間中の位相情報か観測的に得られ始めた。
\＃将来的には，Kerr時空の検証，重力理猃の検証などが重要。

むて し まい

