

SAIDA Hiromi (Daido Univ.,Japan)

* Under preparation for paper submission

第9回 BH磁気圏研究会	2016.Mar.2-5
(マウントレースイ, 夕張)	(Mar.5, talk)
第21回特異点研究会	2016.Jan.9-11
(慶応大学)	(Jan.10, talk)
28th Texas Sympo.	2015.Dec.14-18
(Geneva, Swiss)	(Dec.17, talk)

Working Assumption Gravity is described by the General Relativity.

→ If the difference from GR would be observed, it would be the time to consider the modified gravity theory.

1. Introduction : Basic idea

1.1 From candidate to itself

- Best observational knowledge of BH at present \rightarrow BH candidates by Newtonian gravity
 - $\ensuremath{\Uparrow}$ Large Gap in Physics !!
- BH is a general relativistic (GR) object

 \rightarrow The method to find "BH itself" is at least a direct detection of the GR effect of BH.

What is it? How can we do it?

1.2 Meaning of BH detection in GR context

• Theoretical (mathematical) fact in GR — Uniqueness Theorem Asymptotic flat BH spacetime is uniquely specified by 3 parameters: $M_{\rm BH}$: mass $J_{\rm BH}$: spin angular momentum $Q_{\rm BH}$: electric charge

 $\diamond Q_{\rm BH} = 0$ is expected for real situations.

• Define the meaning of "direct" detection of BH

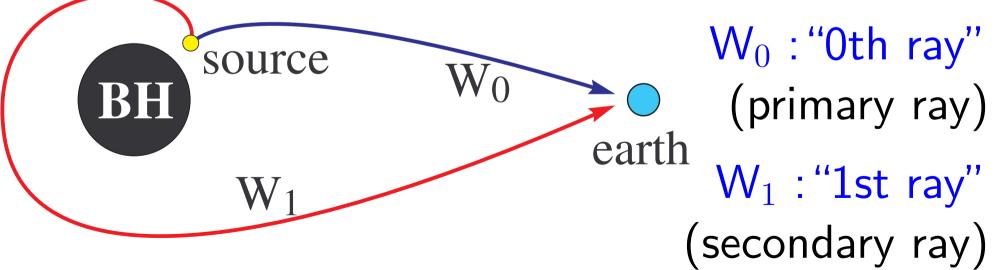
To measure the parameters M and χ **by detecting the GR effect of BH.**

◇ Mass in length scale: $M = \frac{GM_{\rm BH}}{c^2}$ [cm]
◇ Dimensionless spin parameter: $\chi = \frac{a}{M}$ [no-dim]
(usual spin parameter: $a = J_{\rm BH}/(M_{\rm BH}c)$ [cm])
◇ Kerr BH horizon radius: $r_{\rm BH} = M [1 + \sqrt{1 - \chi^2}]$ ⇒ $0 \le \chi < 1$

1.3 GR effect of BH as our target

- Target : Spinning BH Gravitational Lens (SGL)
- An ideal situation we want to observe:
 - ♦ Clear environment around BH except the source
 - ♦ Burst-like and spherical emission

seen from the source



Basic fact in our situation Observing two quantities of SGL $\begin{cases} \Delta t_{\rm obs} & : \text{ Time delay} \\ \mathcal{R}_{\rm obs} = \frac{F_1}{F_0} & : \text{ Flux ratio} \end{cases}$ of W_0 and W_1 , gives the BH parameters (M, χ) , if the inclination angle $\theta_{\rm obs}$, the source's motion $(\vec{x}_{\rm s}, \vec{u}_{\rm s})$, and the source's emission spectrum $I_{\rm s}(\nu_{\rm s})$ are known.

 \rightarrow What should we do with observation?

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

• Steps for extracting (M, χ) from observation.

(a) Theory:

Prepare numerically the date set of $(\Delta t_{\rm obs}, \mathcal{R}_{\rm obs})$ with various values of $(M, \chi; \theta_{\rm obs}, \vec{x}_{\rm s}, \vec{u}_{\rm s}, I_{\rm s})$.

(b) Observation:

Observe the target (BH candidate) and take the data $(\Delta t_{\rm obs}, \mathcal{R}_{\rm obs})$ as many as possible.

(c) Comparison:

Make the table from (a) and (b).

\rightarrow See the next page \cdots

\diamond If this table is obtained by steps (a), (b) and (c),

obs. data	corresponding theoretical data by step (a)
$(\Delta t_{ m obs},\mathcal{R}_{ m obs})$	$(M, \chi; \mathbf{C}) , \mathbf{C} = (\theta_{\mathrm{obs}}, \vec{x}_{\mathrm{s}}, \vec{u}_{\mathrm{s}}, I_{\mathrm{s}})$
(1.32, 0.27)	$(9.0,0.1;\mathrm{C_0})$, $(\boxed{3.2,0.8};\mathrm{C_0'})$, $(5.8,0.8;\mathrm{C_0''})$, \cdots
(4.05 , 0.03)	$(3.2, 0.8; C_1)$, $(2.1, 0.9; C_1')$, $(1.9, 0.5; C_1'')$, \cdots
(7.94 , 1.04)	$(0.8,0.3;\mathrm{C_2})$, $(7.4,0.9;\mathrm{C_2'})$, $(\boxed{3.2,0.8};\mathrm{C_2''})$, \cdots
(9.28 , 0.44)	$(\boxed{3.2,0.8};\mathrm{C}_3)$, $(4.5,0.5;\mathrm{C}_3')$, $(1.9,0.5;\mathrm{C}_3'')$, \cdots

 \rightarrow then we suggest $(M, \chi) = (3.2, 0.8)$

This talk discusses the steps (a) and (b)

2. SGL's Observable Quantities

2.1 Setup for numerical calculation

- Input parameters: $M\,,\,\chi\,,\, heta_{
 m obs}\,,ec x_{
 m s}\,,\,ec u_{
 m s}\,,\,I_{
 m s}(
 u_{
 m s})$
- Output parameters: Δt_{obs} , \mathcal{R}_{obs} \leftarrow | calculate
- Back Ground: Kerr spacetime

l calculate these quant.

 $\mathrm{d}s^2 = g_{tt}\,\mathrm{d}t^2 + 2g_{t\varphi}\,\mathrm{d}t\,\mathrm{d}\varphi + g_{rr}\,\mathrm{d}r^2 + g_{\theta\theta}\,\mathrm{d}\theta^2 + g_{\varphi\varphi}\,\mathrm{d}\varphi^2$

$$\begin{cases} g_{\mu\nu} = g_{\mu\nu}(r,\theta\,;\,M,\chi) & \text{determined by } M\,,\,\chi \\ x^{\mu} = (\,t\,,\,r\,,\,\theta\,,\,\varphi\,) & \text{Boyer-Lindquist coord.} \end{cases}$$

2.2 Steps to calculate $(\Delta t_{\rm obs}, \mathcal{R}_{\rm obs})$

Step1. Solve Null Geodesic Eq. which connects the source and observer (semi-shooting) \rightarrow Time delay Δt is obtained. Step2. Solve Geodesic Deviation Eq. \rightarrow Visible solid-angle $\Delta\Omega$ is obtained. Step3. Specify the source's velocity \vec{u}_{s} and specific intensity $I_{\rm s}(\nu_{\rm s}) \, [{\rm erg}/{\rm s}\,{\rm cm}^2\,{\rm Hz}\,\Omega]$. \rightarrow Flux ratio \mathcal{R}_{obs} is obtained.

2.3 Step1: Null geodesics, $\Delta t_{ m obs}$ and Doppler

• Some notes on Kerr BH : \diamond BH horizon at t = const. is the sphere of radius r_{BH} $r_{\rm BH} = M [1 + \sqrt{1 - \chi^2}] [\rm cm]$ $\text{Ergo-surface} : r_{\text{erg}} = M \left[1 + \sqrt{1 - \chi^2 \cos^2 \theta} \right]$ \rightarrow Radial motion ($\theta, \varphi = \text{const.}$) is impossible in the ergo-region $r < r_{\rm erg}$. \rightarrow Any object rotates with BH spin in " $r \leq r_{\rm erg}$ ". ♦ Geodesic motion is "three-dimensional" in general, except for on the equatorial plane $\theta = \pi/2$.

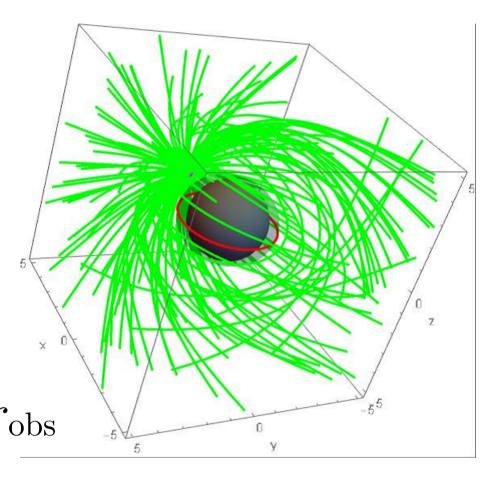
• (Null) Geodesic eq. in Hamilton's formalism \diamond Dynamical Variables : $\begin{cases} x^{\mu}(\eta) : \text{null geodesic} \\ k_{\mu}(\eta) : \text{tangent 1-from} \end{cases}$ \rightarrow In Kerr spacetime, $(\eta : affine para.)$ $k_{\mu} = (-\varepsilon, k_r(\eta), k_{\theta}(\eta), l)$ $\diamond \text{ Hamiltonian} : \mathcal{H} = \frac{1}{2} k_{\mu} k_{\nu} g^{\mu\nu}(x) \quad \left(=\frac{1}{2} k^2\right)$ $\diamond \text{ Hamilton's eq.: } \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\eta} = \frac{\partial \mathcal{H}}{\partial k_{\mu}} , \ \frac{\mathrm{d}k_{\mu}}{\mathrm{d}\eta} = -\frac{\partial \mathcal{H}}{\partial x^{\mu}}$ \rightarrow Solve these six ODEs numerically.

* note: $d\mathcal{H}/d\eta \equiv 0 \implies k^2 = 0$ holds automatically

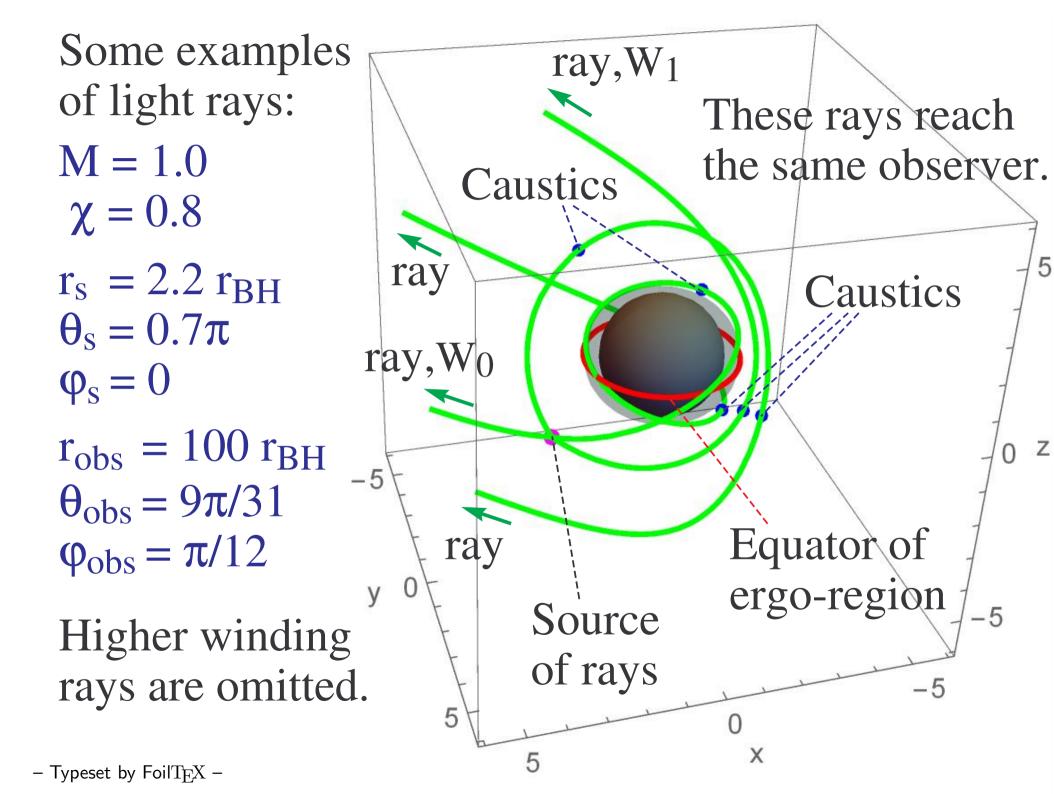
– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

- Solving null geodesic eq. by semi-shooting:
 - \circ Fix $r_{
 m obs}\,,\,ec{x_{
 m s}}$
 - \circ Shoot light rays in many directions at $\vec{x}_{\rm s}$
 - \circ Store necessary data at every point on the sphere of radius $r_{
 m obs}$

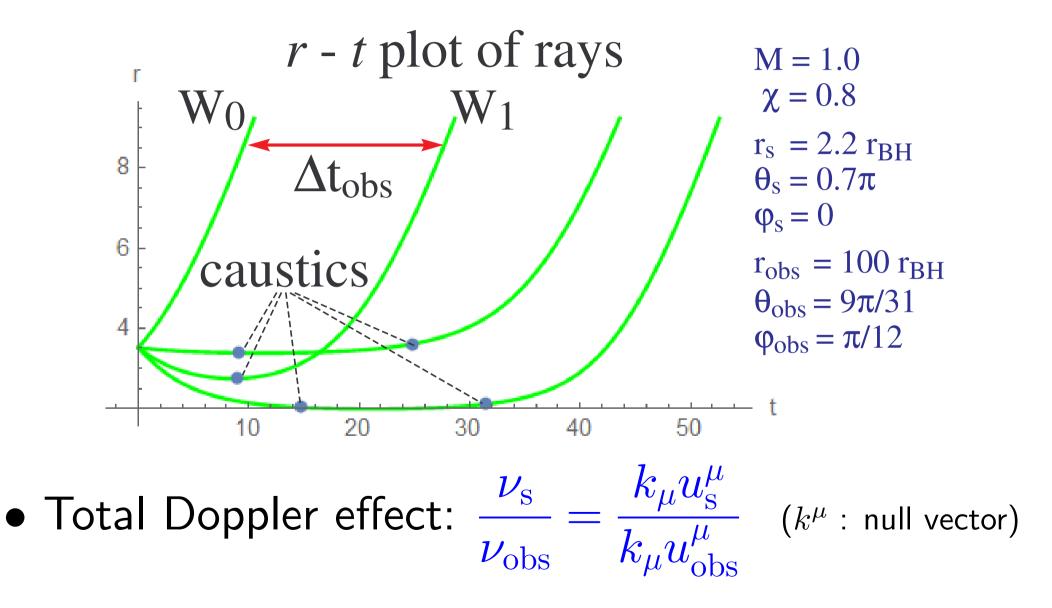
then · · ·



(ex. $r_{\rm obs} = 100 r_{\rm BH}$)



• Time delay Δt_{obs} is read from the "*r*-*t* plot" of the primary ray W₀ and secondary ray W₁.

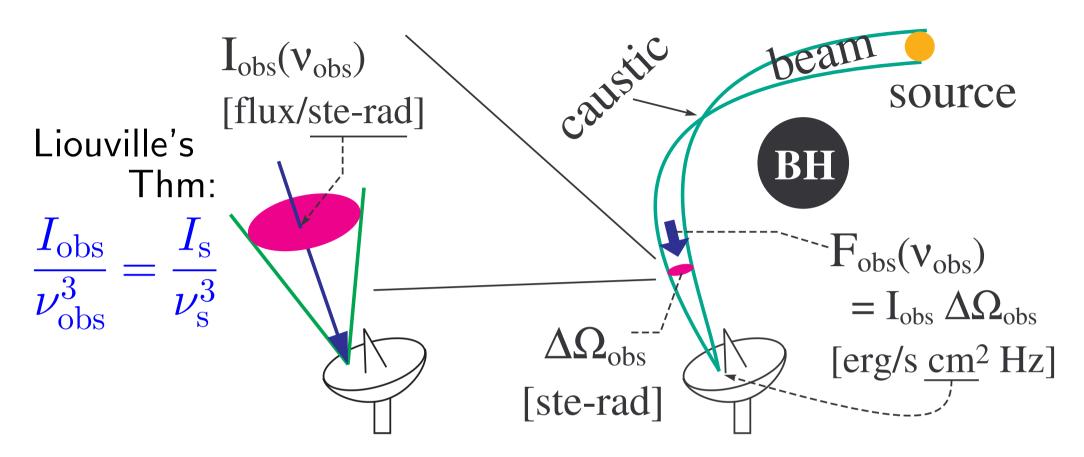


2.4 Def. of Specific Flux: preparation for next

• Observed Specific Flux $[erg/s cm^2 Hz]$

$$F_{\rm obs}(\nu_{\rm obs}) = I_{\rm obs}(\nu_{\rm obs}) \Delta \Omega_{\rm obs} = \left(\frac{\nu_{\rm obs}}{\nu_{\rm s}}\right)^3 I_{\rm s}(\nu_{\rm s}) \Delta \Omega_{\rm obs}$$

where $\begin{cases} \text{freq. at observer} &: \nu_{obs} = -u_{obs}^{\mu}k_{\mu}\big|_{obs} \\ \text{freq. at emission} &: \nu_{s} = \nu_{s}(\nu_{obs}) = -u_{s}^{\mu}k_{\mu}\big|_{s} \\ \text{Visible Solid-angle} : \Delta\Omega_{obs} \\ \text{Specific Intensity} &: I_{s}(\nu_{s}) \\ \rightarrow \text{ see next fig.} \end{cases}$



- "specific" = per unit frequency
- \circ Intensity $I(\nu)$ is the flux per unit solid-angle.
- * [ste-rad] is the unit of solid-angle.

(Full sky = 4π [ste-rad])

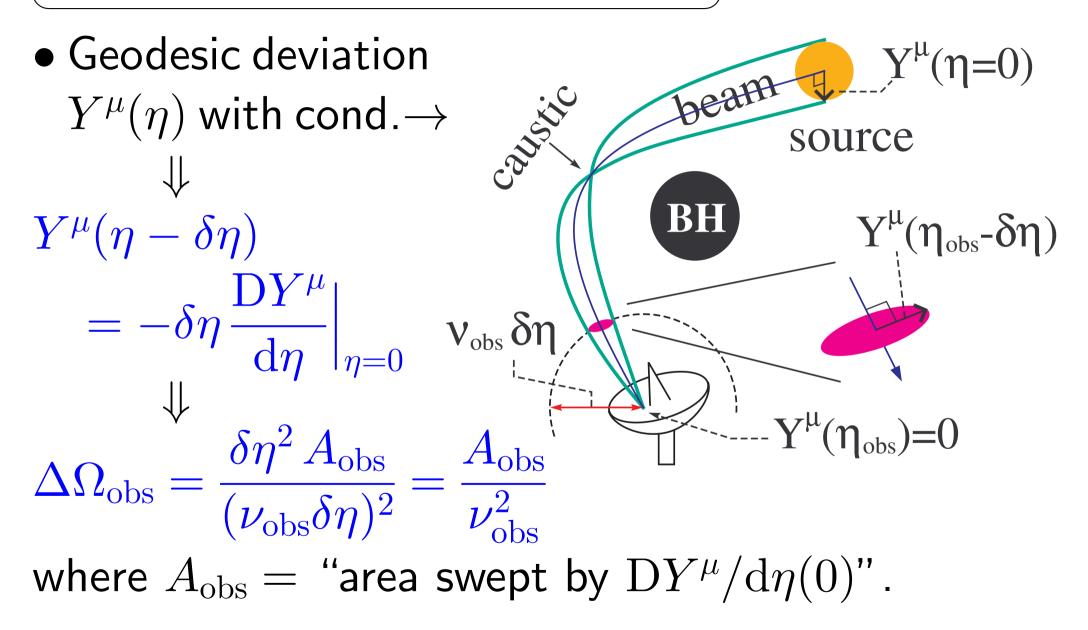
Why the specific intensity I(ν) ?
 → I(ν) [erg/s cm² Hz ste-rad] gives a useful scalar quantity along each null geodesic!

$$rac{I(
u)}{
u^3} = \text{const.}$$
 along each flow line

* ref: Misner, Thorne & Wheeler, *Gravitation*, p587

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

2.5 Visible solid-angle – Step2



- Null geodesic deviation eq. (Jacobi eq.) • A null tetrad basis: $e_{(a)}^{\mu} = \{k^{\mu}, l^{\mu}, e_{(1)}^{\mu}, e_{(2)}^{\mu}\}$ $\begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$
 - $g_{\mu\nu}e^{\mu}_{(a)}e^{\nu}_{(b)} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} (a, b = k, l, 1, 2)$
- → Parallel transport along the null geodesic $k^{\mu}(\eta)$ $k^{\nu}(\eta)\nabla_{\nu}e^{\mu}_{(a)}(\eta) = 0 \cdots$ solve numerically → Tetrad basis "field" $e^{\mu}_{(a)}(\eta)$ on the null geodesic.

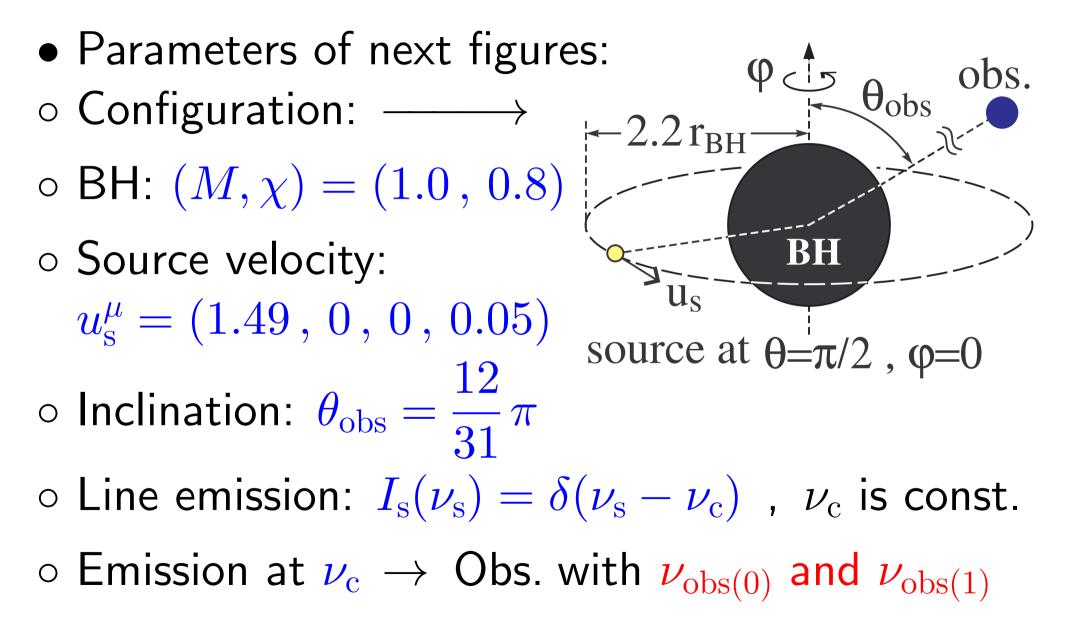
♦ Tetrad component:

$$\begin{split} Y_{(\mathrm{a})} &= Y_{\mu} e_{(\mathrm{a})}^{\mu} \ \leftarrow \text{scalar} \\ \diamond \text{ Jacobi eq.: } \frac{\mathrm{d}^2 Y_{(\mathrm{a})}}{\mathrm{d}\eta^2} &= -\frac{\mathrm{Rmn}^{(\mathrm{b})}_{(\mathrm{k})(\mathrm{a})(\mathrm{k})}}{\uparrow} Y_{(\mathrm{b})} \\ & (\text{Tetrad component of Riemann curvature tensor}) \\ & \rightarrow (\mathrm{a}) = (1), (2) \cdots \text{ by symmetry of } \mathrm{Rmn}^{\mu}_{\nu\alpha\beta} \\ & \rightarrow \text{ Solve these two ODEs numerically} \\ & \text{ to obtain } Y^{\mu}(\eta) \\ & \rightarrow \text{ Area element } A_{\mathrm{obs}} \text{ is calculated.} \end{split}$$

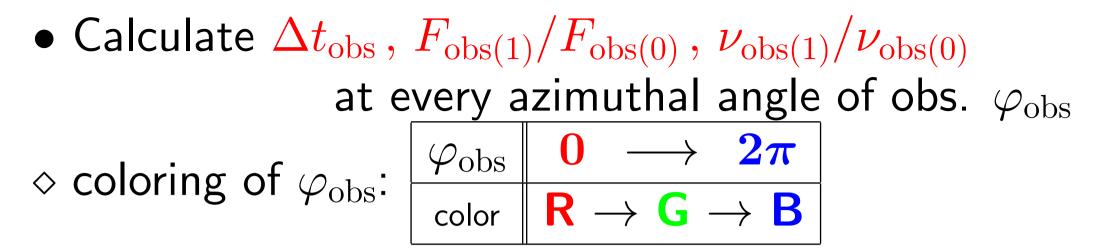
2.6 Step3: Flux ratio

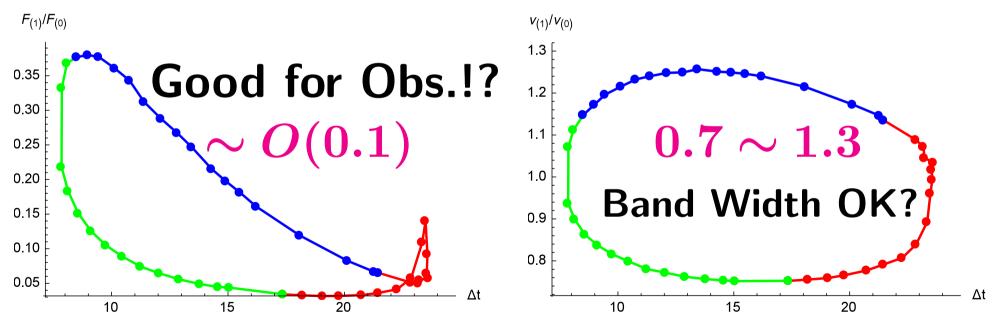
• Observer 4-velocity : $u_{obs}^{\mu} = \frac{\partial}{\partial t}$ $\rightarrow \nu_{
m obs} = -u^{\mu}_{
m obs} k_{\mu} |_{
m obs} = -k_{ct}$ (const. of motion) • Input source's velocity u^{μ}_{s} $\rightarrow \nu_{\rm s} = - u_{\rm s}^{\mu} k_{\mu} \big|_{\eta=0} \ , \ k^{\mu}(\eta) : \ \ {\rm tangent \ of \ null \ geodesic}$ $\rightarrow \nu_{\rm s} = \nu_{\rm s}(\nu_{\rm obs})$ Total Dopper effect is obtained • Input specific intensity at source $I_{\rm s}(\nu_{\rm s})$ \rightarrow Flux $\mathcal{F}_{obs}(\nu_{obs})$ is obtained !

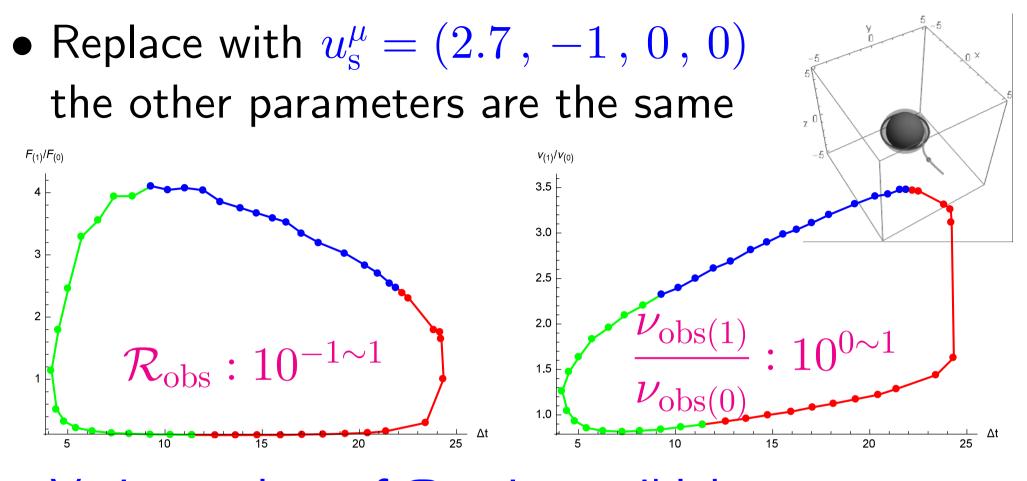
2.7 Ex. of numerical results: preliminary



[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –







♦ Various values of \mathcal{R}_{obs} is possible!
♦ Typically $O(\Delta t_{obs}) \sim O(\pi r_s)$ (= 10 for this case)
⇒ There should be the case which is
detectable by the present telescope capability!

2.8 現在の望遠鏡での検出可能性

● 例:NICT 鹿島34m 電波望遠鏡

$$\mathsf{S/N}: R_{\mathrm{sn}} = rac{F_{\mathrm{obs}}}{F_{\mathrm{sefd}}} \sqrt{2 \, \delta \nu \, \delta t}$$

◇システム雑音: $F_{\text{sefd}} = 300$ Jy ◇観測バンド幅: $\delta \nu = 1024$ MHz

◇ 観測継続時間: $\delta t = 60$ sec

情報通信研究機構(NICT) 次世代時空計測グループHPより

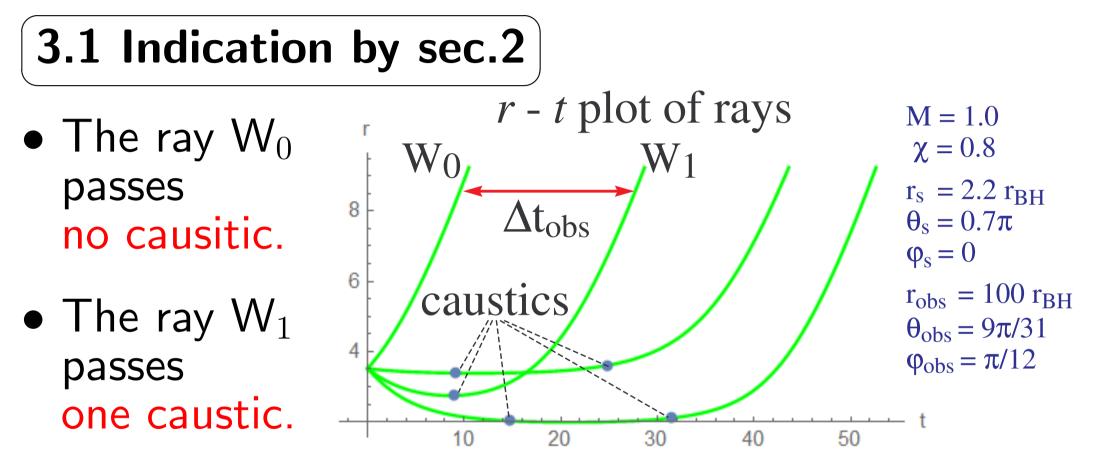
- ◇信号検出基準: *R*_{sn} > 6 (1Jy = 10⁻²⁶W/m²Hz)
- \rightarrow 検出可能な光線の強度条件: $F_{obs} > 0.005$ Jy 0.005Jy の光線が来れば検出できる。

- 観測対象の例:SgrA*
- → 典型的な放射強度: 1Jy
- $\rightarrow W_0$ (primary ray) の強度の仮定: $F_0 = 0.1$ Jy
- $\rightarrow W_1$ (secondary ray) が観測可能であるためには:

$$F_1 > 0.005 \operatorname{Jy} \Rightarrow \mathcal{R}_{\operatorname{obs}} := \frac{F_1}{F_0} > 0.05$$

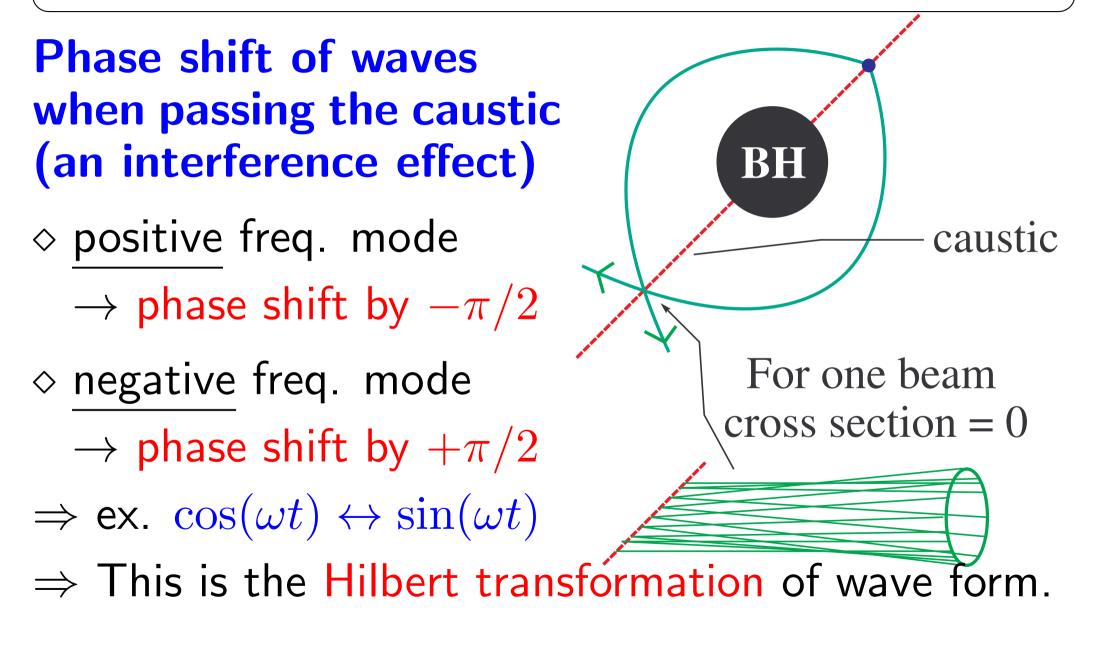
現在の望遠鏡性能で
$$(\Delta t_{obs}, \mathcal{R}_{obs})$$
の
観測可能性が期待できる!

3. SGL in the Light Curve



 \rightarrow The effect of caustic on the light curve may be important for the observation.

3.2 Gouy phase shift: wave optics issue (not GR)



3.3 Expected feature of light curve

 Gouy Phase Shift $I_{obs}(t_{obs})$ "GPS" light curve \Leftrightarrow Hilbert trans. of wave form Observed Flux W_1 W $F_{\rm obs} \propto |E_{\rm obs}|^2$ $(E_{obs}: amplitude)$ lobs Principle of observation Find the GPS (Gous Phase Shifted) light curve from the time series data taken by a telescope. Then, the delay $\Delta t_{\rm obs}$ and ratio $\mathcal{R}_{\rm obs}$ are obtained.

4. Summary

- "Direct" BH detection is to measure M, χ through GR effects.
- Focus on the Spinning BH's Gravitational Lens
- Obs. quantities $(\Delta t_{obs}, F_1/F_0)$ seem to be detectable by the present telescope capability !? \rightarrow Already estimated for a radio telescope in Japan. How about X-ray telescope ?
- Light curve \rightarrow the Gouy effect may appear.
- If $u_{(1)}/
 u_{(0)}$ is also an observable, it is useful.