Recent IACTs found pulsed emission in 25-400 GeV from the Crab pulsar.

VERITAS (> 120 GeV)
Aliu+ (2011, Science 334, 69)

MAGIC (25–416 GeV)
Aleksić+ (2011a,b)

High-energy (>100MeV) photons are emitted mainly via curvature process by ultra-relativistic e±’s.

Above several GeV, curvature spectrum should show exp. cutoff.
Broad-band spectra (pulsed)

- High-energy (>100MeV) photons are emitted mainly via curvature process by ultra-relativistic e^\pm's.

- Above several GeV, curvature spectrum should show exp. cutoff.

- However, above 20 GeV, ICS by secondary/tertiary pairs contributes.

High-energy (>100MeV) photons are emitted mainly via curvature process by ultra-relativistic (~10TeV) e^\pm's accelerated in pulsar magnetosphere.

Some of the primary γ-rays are absorbed in the NS magnetosphere and reprocessed in lower energies via synchrotron process.

§2 Rotating NS Magnetosphere

The observed high-energy emissions are realized when the rotational energy of the NS is electro-dynamically extracted and partly dissipated in the magnetosphere.

(e.g., unipolar inductor)

Magnetic and rotation axes are generally misaligned.

Pulsars:

- rapidly rotating, highly magnetized NS

Possible sites of particle acceleration

- Ideal MHD condition holds in most of magnetosphere, $E \cdot B = 0$.

- In some limited regions, deficient charge supply leads to $E \cdot B \neq 0$.

- In charge deficit region, E_a is solved from the Poisson eq., $\nabla \cdot E_a = 4\pi (\rho - \rho_{el})$.

Credit: A. Harding
§2 Rotating NS Magnetosphere

Early 80’s, the polar-cap (PC) model was proposed. (Daugherty & Harding ApJ 252, 337, 1982)

A single PC beam can produce a variety of pulse profiles. However, the emission solid angle ($\Delta \Omega \ll 1 \text{ ster}$) was too small to reproduce the wide-separated double peaks.

A great deal of effort has been made; however, one has to invoke a very small inclination, α, and viewing angles, ζ, to reproduce the widely separated pulse peaks.

In addition, localization of gap altitudes ($\sim r_*$) prohibits enough $L_\gamma (\ll 0.3 L_{\text{spin}})$ as observed. ($L_{\text{radio}} \sim 10^{-5} L_{\text{spin}}$ is OK.) Thus, a high-altitude emission drew attention.

§3 Higher-altitude Pulsar Emission Models

Slot gap = a pair-free space formed between the last-open field lines and the pair-formation front (PFF).

However, a lower-altitude SG is still limited within a few r_*; thus, the same difficulty ($\Delta \Omega \ll 1 \text{ ster}$) still remains.

Energetics is solved!!!
§3 Higher-altitude Pulsar Emission Models

They explained, e.g., the widely separated double peaks.

Assuming that the gap extends from the NS surface to the light cylinder with constant emissivity, Dyks & Rudak (2003, ApJ 598, 1201) demonstrated the formation of double peaks, which arise from the crossing of two caustics associated with different poles.

In this higher-altitude slot-gap model, most observers catch emission from both (N/S) poles.

Dyks, Harding, Rudak (2004, ApJ 606, 1125) showed that Crab pulsar’s optical polarization characteristics can be qualitatively reproduced by their SG model.
§3 Higher-altitude Pulsar Emission Models

Dyks, Harding, Rudak (2004, ApJ 606, 1125) showed that Crab pulsar’s optical polarization characteristics can be qualitatively reproduced by their SG model.

However, unfortunately, the higher-altitude SG model contains two fatal electro-dynamical inconsistencies.

§4 Difficulties in Higher-altitude SG Model

Problem 1: insufficient luminosity

Adopting the same parameter as Harding+ (2008), one obtains too small γ-ray flux from a higher-altitude SG.

Analytically predicted γ-ray flux of the Crab pulsar:

\[(\nu F_{\nu})_{\text{peak}} \approx 0.0450 f^3 \kappa \frac{\mu^2 \Omega^4}{c^3 d} \frac{1}{d^2} \sim 1 \]

\(f \): fractional gap width (\(f \ll 1 \) denotes a thin gap)

The difference between OG and SG models appears through \(f, \kappa \) and assumed \(\mu \) (magnetic moment).
Apply this general result to the Crab pulsar ($\Omega = 190$ rad s$^{-1}$).

(I) For OG model ($f \approx 0.14$, $\kappa \approx 0.3$, $\mu = 4 \times 10^{30}$ G cm3),

$$\left(\nu F_\nu\right)_{\text{peak}} \approx 4 \times 10^{-4} \text{ MeV s}^{-1} \text{ cm}^{-2} \sim \text{EGRET flux.}$$

(II) For SG model ($f \approx 0.04$, $\kappa \approx 0.2$), even with a large μ,

$$\left(\nu F_\nu\right)_{\text{peak}} \approx 3 \times 10^{-5} \left(\mu / 8 \times 10^{30}\right)^2 \text{ MeV s}^{-1} \text{ cm}^{-2} < 0.1 \text{ EGRET flux.}$$

Problem 2: unphysical assumption of GJ charge density (per B flux tube)

Without pair creation, electron density per B will be constant along the field line. However, it results in a reversal of E_\parallel due to the sign change of $\rho - \rho_{\text{GJ}}$.

Problem 1: insufficient luminosity

In short, both analytical and numerical results show that a SG can produce a negligible γ-ray flux.

(I) For OG model ($f \approx 0.14$, $\kappa \approx 0.3$),

$$\left(\nu F_\nu\right)_{\text{peak}} \approx 4 \times 10^{-4} \text{ MeV}$$

(II) For SG model ($f \approx 0.04$, $\kappa \approx 0.2$), even with a large μ,

$$\left(\nu F_\nu\right)_{\text{peak}} \approx 3 \times 10^{-5} \left(\mu / 8 \times 10^{30}\right)^2 \text{ MeV} < 0.1 \text{ EGRET flux.}$$

OG model remains as the only possible γ-ray pulsar model.

Problem 2: unphysical assumption of ρ_{GJ}/B

To prevent a sign reversal of E_\parallel, they assumed that ρ_{GJ}/B tends to a constant in the higher altitudes.
§5 Difficulties in Higher-altitude SG Model

Problem 2: unphysical assumption of ρ_{GJ}/B
To prevent a sign reversal of E_\parallel, they assumed that ρ_{GJ}/B tends to a constant in the higher altitudes.
However, Maxwell eq. uniquely gives

$$\rho_{\text{GJ}} = \frac{c^2}{4\pi \sqrt{g}} \partial_{\mu} \left(\sqrt{g} p^{\mu\nu} \sqrt{-\Omega} \right) F_{\nu\rho}.$$

Unfortunately, this assumption is unphysical.

§5 Difficulties in Higher-altitude SG Model

Problem 2: unphysical assumption of ρ_{GJ}/B
Since the pair-starved PC (PSPC) model adopts the same ρ_{GJ} distribution, this difficulty applies not only to the higher-altitude SG model, but also to the PSPC model (Venter+ 2009, ApJ 707, 800).

In short, higher-latitude SG model & PSPC model contain serious electro-dynamical problem that contradicts with Maxwell eq.

§6 Classic Outer-gap (OG) Models

As an alternative possibility of high-altitude emission model, the outer gap model was proposed.

So far, there have been found no serious electrodynamical problems in the OG model (unlike SG or PSPC model).

Thus, let us concentrate on the OG model in what follows.
§§ §§ §6 Classic OG Models

Mid 80’s, the outer-gap (OG) model was proposed.

Emission altitude > 100 r_{NS} → hollow cone emission
($\Delta \Omega > 1$ ster)

Mid 90’s, OG model was further developed by including special relativistic effects.
(Romani ApJ 470, 469)

Explains wide-separated double peaks.

Outer-gap model became promising.

§§ §§ §7 Modern Outer-Gap Model

Indeed, the sub-TeV components from the Crab pulsar shows that pulsed γ-rays are emitted from the outer magnetosphere ($\gamma B \rightarrow e^+ e^-$).

We thus consider the outer-gap model
in this talk.

§§ §§ §7 Modern Outer-Gap Model

Various attempts have been made on recent OG model:

3-D geometrical model
→ phase-resolved spectra
(Cheng + ’00; Tang + ’08)

→ atlas of light curves for PC, OG, SG models
(Watters + ’08)

2-D self-consistent solution
(Takata + ’06; KH ’06)

3-D self-consistent solution
→ phase-resolved spectra, absolute luminosity
if we give only $P, \frac{dP}{dt}, \alpha, kT (+ \zeta)$ (this talk)

In this talk, I’ll present the most recent results obtained in my 3-D version of self-consistent OG calculations.

§§ §§ §7 Modern Outer-Gap Model

3-D self-consistent OG model

Death line of normal and millisecond PSRs on (P, \dot{P}) plane

Spectral hardening of trailing light-curve peak

Crab pulsars HE-VHE pulsed inverse-Compton emission
(Alkesic + 2012, AA 540, A69)

Evolution of γ-ray luminosity of rotation-powered PSRs
Today, using the OG mode, we derive the observed relationship, $L_\gamma \propto L_{\text{spin}}^{0.5}$, both analytically and numerically.

$$\left(\nu F_\gamma\right)_{\text{peak}} \approx 0.0450 h_m^{-1} \mu^2 \Omega^4 \frac{1}{c^3} \frac{1}{d^2},$$

by curvature process, where h_m denotes dimensionless OG trans-B thickness, μ the dipole moment, and d the distance.

OG luminosity can be, therefore, evaluated as

$$L_\gamma \approx 2.36 \left(\nu F_\gamma\right)_{\text{peak}} \times 4\pi d^2 f_\Omega \approx 1.23 f_\Omega h_m^{-1} \frac{\mu^2 \Omega^4}{c^3}.$$

Thus, h_m controls the luminosity evolution.

To examine h_m, consider the condition of self-sustained OG. An inward e^- emits $N_{\gamma}^{\text{in}} \approx 10^4$ synchro-curvature photons, $N_{\gamma}^{\text{in}} \tau^{\text{in}} \approx 10$ of which materialize as pairs.

Each returned, outward e^+ emits $N_{\gamma}^{\text{out}} \approx 10^5$ curvature photons, $N_{\gamma}^{\text{out}} \tau^{\text{out}} \approx 0.1$ of which materialize as pairs.

null-charge surface

null-charge surface

That is, gap trans-B-field thickness h_m is automatically regulated so that $N_{\gamma}^{\text{in}} \tau^{\text{in}} N_{\gamma}^{\text{out}} \tau^{\text{out}} = 1$ is satisfied.
§ 7 Modern OG Model: L_γ vs. L_{spin}

Step 1: Both N_{γ}^{in} and N_{γ}^{out} are expressed in terms of P, μ, α, T, and h_m. Thus, $N_{\gamma}^{\text{in}} = N_{\gamma}^{\text{out}} + 1$ gives $h_m = h_{in}(P, \mu, \alpha, T)$.

Step 2: Specifying the spin-down law, $P = P(t, \alpha)$, and the cooling curve, $T = T(t)$, we can solve $h_m = h_m(t, \alpha)$.

Step 3: On the other hand, $P = P(t, \alpha)$ gives $(\)_E$.

Step 4: Therefore, we can relate $L_\gamma \propto h_m^3 \bar{E}$ and \dot{E} with intermediate parameter, pulsar age, t.

§ 7 Modern OG Model: L_γ vs. L_{spin}

Step 1: express N_{γ}^{in} and N_{γ}^{out} with P, μ, α, T, h_m.

OG model predicts

$$E_\gamma = \frac{\mu}{2\sigma_{lc}} h_m^2$$

Particles (e^\mp's) saturate at Lorentz factor,

$$\gamma \left(\frac{3P}{2e} \right)^{1/4}$$

emitting curvature photons with characteristic energy,

$$h_{\nu \gamma} = \frac{3}{2} h_0^3 \gamma^2$$

Step 1: express N_{γ}^{in} and N_{γ}^{out} with P, μ, α, T, h_m.

An inward e^- or an outward e^+ emits

$$(N_{\gamma})^{\text{in}} = eE_{\parallel} |l_2| / h\nu_c, \quad (N_{\gamma})^{\text{out}} = eE_{\parallel} |l_1| / h\nu_c$$

photons while running the distance l_2 or l_1.

Quantities $l_1, l_2, F_1, F_2, \sigma_1, \sigma_2$ can be expressed by P, μ, α, T, h_m, if we specify the B field configuration.
Step 2: Give spin-down law and NS cooling curve.

Assume dipole-radiation formula,

\[-I \dot{\Omega} = \frac{2}{3} \mu^2 \Omega^4 \rightarrow P = P(t, \alpha)\]

Adopt the minimum cooling scenario (i.e., without any direct-Urca, rapid cooling processes).

\[\rightarrow T = T(t)\]

Step 3: We can immediately solve \[E = \dot{E}(t, \alpha)\] by the spin-down law.

\[\dot{E} = -I \dot{\Omega} = C \frac{\mu^2 \Omega^4}{c^3},\]

for magnetic dipole braking. \[C = \frac{2}{3} \sin^3 \theta\]

Assuming \[\alpha = 90^\circ\], and noting \[\Omega = 2\pi P\], we obtain

\[P = \frac{39.2 \mu I^{3/2}}{10^3 \text{ yr}} \left(t / 10^3 \text{ yr} \right)^{1/2} \text{ ms}\]

and hence \[\dot{E} = \dot{E}(t, \alpha)\]
§7 Modern OG Model: L_γ vs. L_{spin}

Step 4: Use $h_m = h_m(t)$ to relate $L_\gamma \propto h_m^{-1} E$ with $E = E(t)$.

The Poisson equation for the electrostatic potential ψ is given by

$$- \nabla^2 \psi = 4\pi (\rho - \rho_{\text{GJ}}) ,$$

where

$$E_\parallel = -\frac{\partial \psi}{\partial x} , \quad \rho_{\text{GJ}} = -\frac{\Omega \cdot B}{2\pi c} ,$$

$$\rho = \int dp^3 \left[N_e(x, p) - N_+ (x, p) \right] + \rho_{\text{ion}} ,$$

N_e/N_+: distrib. func. of e^+/e^-

p: momentum of e^+/e^-

Assuming $\partial_t + \Omega \partial_y = 0$, we solve the e^\pm's Boltzmann eqs.

$$\frac{\partial N_+}{\partial t} + \mathbf{v} \cdot \nabla N_+ + \left(\mathbf{e} \mathbf{E}_\parallel + \mathbf{v} \times \mathbf{B} \right) \frac{\partial N_+}{\partial p} = S_{\text{IC}} + S_{\text{St}} + \int \alpha_{\nu} d\nu \int \frac{I_{\nu}}{h \nu} d\omega$$

together with the radiative transfer equation,

$$\frac{dl}{dt} = -\alpha_{\nu} I_{\nu} + j_{\nu}$$

N_+: positronic/electronic spatial # density,

E_\parallel: magnetic-field-aligned electric field,

S_{IC}: ICS re-distribution function, $d\omega$ solid angle element,

I_{ν}: specific intensity,

l: path length along the ray

α_{ν}: absorption coefficient,

j_{ν}: emission coefficient

Second, let us derive the evolution of L_γ numerically.

For this purpose, we simultaneously solve

1. Poisson eq. for electrostatic potential,
2. Boltzmann eqs. for electrons/positrons,
3. Radiative transfer eq. for emitted photons

in the 3-D pulsar magnetosphere under the BDCs,

(a) inner BD= NS surface,
(b) lower BD= last-open B lines,
(c) outer, upper BD is determined as a free-BD,
(d) No e^\pm injection across inner/outer BDs,
(e) No photon injection across inner/outer BDs.
Numerical solution is consistent with the analytical one.

For light element envelop, \(L_\gamma \) peaks around 30 kys, as predicted by analytical calculation.

Finally, take a look at the flux correction factor \(f_\Omega \), where:

\[
L_\gamma = 4\pi f_\Omega F_\gamma d^2.
\]

Emission is more beamed along equator as pulsar ages.
Summary

- We can now solve pulsed high-energy emissions from the set of Maxwell (div$E=4\pi\rho$) and Boltzmann eqs., if we specify $P, dP/dt, \alpha_{\max}, kT_{NS}$. We no longer have to assume the gap geometry, E_{gap}, e^x distribution functions.

- Gamma-ray luminosity evolves as

$$L_{\gamma} \propto E^{-0.4}$$

when $E > 10^{36.5}$ erg s$^{-1}$

However, it declines more rapidly at $E < 10^{36.5}$ erg s$^{-1}$, because created current becomes much less than GJ value.

- Curvature cutoff energy is self-regulated below several GeV, because h_{max} is suppressed by E_{gap} screening due to the polarization of produced pairs.